2-Methyltetrahydrofuran (MTHF)

CONTENTS OF FACTORY GATE TO FACTORY GATE

LIFE CYCLE INVENTORY SUMMARY

Chemistry	2
Process Summary	3
Summary of LCI Information	5
Process Diagram Interpretation Sheet	7
Process Diagram or Boundary of LCI	8
Mass Balance of Chemicals in Each Process Stream1	0
Graph of Cumulative Chemical Losses through Manufacturing Process1	4
Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process1	5
Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process1	6
Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms)),
and Assumed Heat Recovery from Hot Streams Receiving Cooling1	7
Graph of Cumulative Energy Requirements1	8

Authors	E. Griffing
Peer reviews, name (date)	MR Overcash (4-29-2008)
Gtg report last modified on	7-12-2011
Additional notes	

Checked for database consistency on	7-12-2011
First gtg version finalized on	4-29-2008
Modification history, Author (date)	EMG (4-29-2008) and EMG (7-12-2011)

Products	MTHF
Standard inputs	2-methyl furan, Hydrogen

Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard methods of engineering process design, and technical reviews. These reports are intended to be representative of industrial production based on the stated route.

Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration of these data with lci data based on other methodologies is the responsibility of the user. Each report may be updated to improve model accuracy or representativeness.

Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999 - present.

Chemistry

Process Summary

Literature

2-Methyl tetrahydrofuran (MTHF) is produced by hydrogenation of 2-methylfuran (MF). The reaction proceeds in the liquid phase (under 2 MPa H₂) or in the vapor phase over a nickel catalyst at 60 - 140 °C (Ullmann's, 2007). Alternatively, MTHF can be isolated as a byproduct of oxidizing furfural (Kirk-Othmer, 2000). In addition, a route based on cyclization and hydrogenation of levulinic acid has been patented, but not used industrially. The levulinic acid route uses the Biofine process (Kamm et al. 2006), which is being studied at the pilot scale. A commercial plant is near completion in Italy (IAGS, 2008). Here, we model production from 2-methylfuran.

2-Methyl furan is vaporized and sent to a reactor with hydrogen vapor. According to US 6,852,868, hydrogen is added in 2:1 molar ratio (to MF). The reaction inputs are heated to 180 $^{\circ}$ C in a vaporizer, and the reaction proceeds at 115 - 130 $^{\circ}$ C over a nickel-based catalyst (U.S. 6,852,868). The reaction is exothermic, and requires heat removal to control the temperature. The reaction product is a mixture that includes 2-MTHF. In general, reaction products are separated by condensation, molecular sieves, or distillation (U.S. 6,852,868). Preferably, 2-MTHF is condensed at –10 oC, and recovered by a single distillation (U.S. 6,852,868).

If the feed is furfuryl alcohol (FA) free, the hydrogenator produces high yields of 2-MTHF. Impurities are low concentrations of 2-pentanone, 2-pentanol (impurities in the MF input). The composition of the organic phase is > 75% 2-MTHF, 15% MF, and < 1% impurities (U.S. 6,852,868).

LCI design

Hydrogen gas is combined with recycle hydrogen 20% of input flow, heated to 180 $^{\circ}$ C and fed to the reactor. Liquid 2-methyl furan is combined with recycled 2-methyl furan, vaporized, heated to 180 $^{\circ}$ C and fed to the reactor. The molar ratio of H₂ to methyl furan into the reactor is 2.05.

The reactor runs at 123 °C. Excess heat is removed by cooling water. Reaction products are cooled to 25 °C (with heat recovery), and then refrigerated to -10 °C. Hydrogen is recovered via a flash. The remaining product stream is distilled. The distillation overhead, mostly 2-methylfuran, is recycled. The bottoms are distilled again to recover MTHF in the overhead. The bottoms of the second columns are 2-pentanone waste (with MTHF).

IAGS (2008). Institute for the Analysis of Global Security. <u>http://www.iags.org/biofine.htm</u> Kamm, B.; Gruber, P.R.; Kamm, M (2006). Biorefineries-Industrial processes and products. Ullmann's (2006). Furfural and Derivatives, (Hoydonckx, H.E.; Van Rhijn, W.M.; Rhijn, W.; De Vol, D.E.; Jacobs, P.A., section authors), accessed online, February, 2008.

Kirk Othmer (2000). Kirk-Oothmer Encyclopedia of Chemical Technology. Furan Derivatives (Kottke, R.H. article author). Accessed online, 2008.

U.S. 6,852,868 (2005). Processes for the preparation of 2-methylfuran and 2-methyltetrahydrofuran. Assined to Pure Energy Corporation.

Critical parameters

Conversion / Yield information from both	reactors		
		Conversion of or	Conversion of or Yield
		Yield from hydrogen	from methyl furan
Total conversion in reactor 1:	From mass	99.9	99.9
(% of reactant entering the process that	balance		
reacts)			
Total per pass conversion in reactor 1:	From mass	83	83
(% of reactant entering the reactor that	balance		
reacts)			
Total yield of reactor 1:	From mass	98.4	98.4
(% yield ProductChem produced in the	balance		
reactor based on reactant input to			
process)			
Total yield of Process:	From mass	97.2	96.6
(% yield produced by the overall	balance		
process based on reactant input to			
process)			
Notes: Industrial source claim better than	97% vield fron	n methyl furan.	

Product purity		
	MTHF	Comments
Used here	99.9	
LiteratureSource		

Summary of LCI Informatio	n
----------------------------------	---

			Inputs									
Input UID	Input Name	Input Flow	Input purity	Units	Comments							
534-22-5	2-methyl furan	986		[kg/hr]	includes replacement of fugitive emissions							
1333-74-0	Hydrogen	47.8		[kg/hr]								
	Total	1033		[kg/hr]								
	Non-reacting inputs											
UID Name Flow Purity Units Comments												
No non-reac	ting inputs											
			Ancillary in	nputs								
UID	Name	Flow	Purity	Units	Comments							
No ancillary	inputs											
			Produc	ts								
Product UID	Product Name	Product Flow	Purity	Units	Comments							
96-47-9	MTHF	1000	99.9	[kg/hr]								
	Total	1000		[kg/hr]								
			Benign Out	flows								
UID	Name	Flow	Purity	Units	Comments							
No benign o	utflows											

Chemical Emissions											
Emission UID	Emission Name	Gas Flow	Liquid Flow	Solid Flow	Solvent Flow	Units	Comments				
534-22-5	2-methyl furan	11.7	4.89e-3	0	0	[kg/hr]					
96-47-9	MTHF	10.1	5.02	0	0	[kg/hr]					
1333-74-0	Hydrogen	0.285	0	0	0	[kg/hr]					
107-87-9	2-pentanone	0.165	16.4	0	0	[kg/hr]					
Totals		22.2	21.4	0	0	[kg/hr]					
Mass Balance											
Total inputs		1033									
Total outflo	ws	1044									
Net input		-10.2									
				Energy	use						
Energy type		Amount				Comments					
electricity					47.9	[MJ/hr]					
heating stear	m				2735	[MJ/hr]					
Net input rea	quirement				2783	[MJ/hr]	Net of energies input to system				
cooling wate	er				-4273	[MJ/hr]					
potential rec	covery				-1043	[MJ/hr]					
Net energy					1740	[MJ/hr]	Net input requirement - potential recovery				

Process Diagram Interpretation Sheet

- 1) As much as possible, standard symbols are used for all unit processes.
- 2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet
- 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
- 4) The process numbering is as follows,
 - generally numbers progress from the start to the end of the process
 - numbers are used for process streams
 - C i , i = 1,..n are used for all cooling non-contact streams
 - S j, j = 1,...n are used for all steam heating non-contact streams
- 5) Recycle streams are shown with dotted lines

For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm

Process Diagram or Boundary of LCI

Steam enters the process as a gas at 207 °C and leaves as a liquid at 207 °C. Cooling water enters at 20 °C and leaves at 50 °C. Unless otherwise indicated, all processes are at 1 atm and 25°C.

Mass Balance of Chemicals in Each Process Stream

All flow rates are given in kg / hr $\,$ Physical state of chemical losses:

	Comments	Streams	Temp [C]	۵.	Phase	Total Flow	Water	2-methyl furan	MTHF		Hydrogen	2-pentanone	Steam	Water
Input		1	25.0	1.00	g	47.5					47.5			
		2	25.0	1.00	g	47.5					47.5			
		Stream 13:Recycle input				9.50					9.50			
		Stream 13:Recycle calculated				9.55	0	0)	0	9.55	0		
		Stream 13:Recycle residue				-0.0508	0	0)	0	-0.0508	0		
		3	19.1	1.00	g	57.0	0	0)	0	57.0	0		
		4	180	1.00	g	57.0	0	0)	0	57.0	0		
Input		5	25.0	1.00	I	974		974	ŀ					
		6	25.0	1.00	I	974		974	ŀ					
		Stream 16:Recycle input				200		195	5	5.00		0.0500		
		Stream 16:Recycle calculated				200	0	195	5	5.05	0	0.0165		
		Stream 16:Recycle residue				-0.0325	0	-0.0211		-0.0450	0	0.0335		
		7	31.7	1.00	I	1174	0	1169)	5.00	0	0.0500		
		8	180	1.00	I	1174	0	1169)	5.00	0	0.0500		
R1	973	kg	2-m	ethyl furan		is converted input)	in rxn 1 (83.2	% of reactor						
	16.4	kg	MTHF			is lost in rxn 2								
		kg				is lost in rxn 3								
		Input to reactor			•	1231	0	1169)	5.00	57.0	0.0500		
		R1 Reaction Coefficient 1			:			-1.00)	1.00	-2.00			
		R1 Conversion 1			:	0		-973	3	1020	-47.5			
10	•			Q :00		•							•	•

	Comments	Streams	Temp [C]	٩	Phase	Total Flow	Water	2-methyl furan		МТНF	Hydrogen	2-pentanone	Steam	Water
		[kg/hr]												
		R1 Conversion 1 [kgmol/hr]			:	11.9			-11.9	11.9	-23.7			
		R1 Reaction Coefficient 2			:					-1.00		1.00		
		R1 Conversion 2 [kg/hr]			:					-16.4		16.4		
		R1 Conversion 2 [kgmol/hr]			:	0.191				-0.191		0.191		
		R1 Reaction Coefficient 3			:									
		R1 Conversion 3			:									
		R1 Conversion 3			:									
		Flow out of reactor			:	1231	C)	196	1009	9.55	16.5		
-		Primary product			:	MTHF								
		Total conversion			:		NA		99.9	NA	99.9	NA		
		Per pass conversion			:				83.2	NA	83.2	NA		
		Total yield from reactor			:				98.4	NA	98.4			
-		9	123	1.00	g	1231	C)	196	1009	9.55	16.5		
		10	25.0	1.00	I	1231	C)	196	1009	9.55	16.5		
		11	25.0	1.00	I	1231	C)	196	1009	9.55	16.5		
		12	-10.0	1.00	I	1231	C)	196	1009	9.55	16.5		
		13	-10.0	1.00	g	9.55					9.55			
-		14	-10.0	1.00	Ι	1221	C)	196	1009	0	16.5		
	Feed	15	-10.0	1.00	I	1221	C)	196	1009	0	16.5		
Di 1		percentage of input distillate	in		:				99.5	0.500		0.100		
		percentage of input bottoms	in		:				0.500	99.5		99.9		
		Boiling Temperatur	e (Tb)		:				63.9	78.9		102		
	Distillate	16	64.0	1.00	I	200	C)	195	5.05	0	0.0165		1
	Bottoms	17	64.0	1.00	I	1021	C)	0.979	1004	0	16.4		

	Comments	Streams	Temp [C]	م	Phase	Total Flow	Water	2-methyl furan	МТНF	Hydrogen	2-pentanone	Steam	Water
	Feed	18	64.0	1.00	I	1021	0	0.979	1004	0	16.4		
Di 2		percentage of input distillate	in		:			99.5	99.5		0.500		
		percentage of input bottoms	in		:			0.500	0.500		99.5		
		Boiling Temperatur	e (Tb)		:			63.9	78.9		102		
	Distillate	19	79.0	1.00	I	1000	0	0.974	. 999	0	0.0822		
Waste	Bottoms	20	79.0	1.00	1	-21.4	0	-4.89E-03	-5.02	0	-16.4	0	0
Main pro	oduct	21	25.0	1.00	I	-1000	0	-0.974	-999	0	-0.0822	0	0
		Product purity (%)				99.9							
		Main product				MTHF							
		Overall Rxn coefficients						-1.00	1.00	-2.00			
		Total yield of proces reactant)	ss (from					96.6	NA	97.2			
Waste		Fugitive Losses (Total)			g	-22.2	0	-11.7	-10.1	-0.285	-0.165	0	0
		Input Sum				1021	0	974	· 0	47.5	0		
		Fugitive Replaceme	ent of			12.0		11.7		0.285			
		Total Input (Input + Replacement)	Fugitive	!		1033	0	986	6 O	47.8	0		
		Product Sum				1000	0	0.974	. 999	0	0.0822		
		Main product flow				1000	0	0.974	. 999	0	0.0822		
		Net Input (in - out, o fugitives)	omitting			0.0833							
Input		C1	20.0	1.00	I	1.38E+04							1.38E+04
Cooling out		C2	50.0	1.00	l	-1.38E+04	<u>0</u>	<u>C</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	-1.38E+04
Input		C3	20.0	1.00	I	4542							4542
Cooling out		C4	50.0	1.00	1	-4542	<u>0</u>	<u>C</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	-4542
Input		C5	20.0	1.00	I	656							656
Cooling		C6	50.0	1.00	1	-656	0	0	00	0	0	0	-656
Input		C7	20.0	1.00	1	7448							7448
			1	I	L	1	1	1	1	I	1		1

	Comments	Streams	Temp [C]	۵.	Phase	Total Flow	Water	2-methyl furan	МТНF	Hydrogen	2-pentanone	Steam	Water
Cooling out		C8	50.0	1.00		-7448	0	0	0	0	0	0	-7448
Input		C9	20.0	1.00	I	4884							4884
Cooling out		C10	50.0	1.00	I	-4884	0	0	0	0	0	0	-4884
Input		C11	20.0	1.00	I	816							816
Cooling out		C12	50.0	1.00	I	-816	0	0	0	0	0	0	-816
Input		S1	207	1.00	I	81.8						81.8	
Steam out		S2	207	1.00		-81.8	0	0	0	0	0	-81.8	0
Input		S3	207	1.00	_	366						366	
Steam out		S4	207	1.00		-366	0	0	0	0	0	-366	0
Input		S5	207	1.00	I	795						795	
Steam out		S6	207	1.00	I	-795	0	0	0	0	0	-795	0
Input		S7	207	1.00	1	463						463	
Steam out		S8	207	1.00	I	-463	0	0	0	0	0	-463	0

Graph of Cumulative Chemical Losses through Manufacturing Process

Cumulative Chemical Loss

Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process

Cumulative Contaminated Water Use

Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process

Cumulative Non-Contamintated Water Use

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling

Energy Input [MJ / hr]						Cooling Requirements [MJ / hr]								
Process Diagram Label	Unit	Energy input [MJ / 1000 kg Product]	Cumulative energy [MJ / 1000 kg Product]	To [C] (Used to determine	Energy Type	Process diagram label	Unit	Energy Loss	Cumulative cooling water energy	Tef [C] (for recovery efficiencv)	Recovery Efficiency	Energy Recovered	Cumulative recovered [MJ / 1000 kg Product]	
Blw1	Blower 1	5.69	5.69		E	R1	Reactor 1	-2035	-2035	123	0.250	-509	-509	
Hx1	Heat exchanger 1	133	139	180	S	Hx3	Heat exchanger 3	-671	-2706	123	0.250	-168	-676	
P1	Pump 1	0.0568	139		Е	Hx4	Heat exchanger 4	-96.9	-2803	25.0	0	0	-676	
Hx2	Heat exchanger 2	595	734	180	S	Di1	Distillation condenser	-1100	-3902	62.9	0.250	-275	-951	
P2	Pump 2	0.0719	734		E	Di2	Distillation condenser 2	-721	-4624	77.9	0.250	-180	-1132	
Ref1	Refrigerator elect. 1	40.4	774	0	Е	Hx5	Heat exchanger 5	-121	-4744	79.0	0.250	-30.1	-1162	
P3	Pump 3	5.32E-04	774		Е									
Di1	Distillation reboiler 1	1292	2066	62.9	S									
P4	Pump 4	0.0593	2066		Е									
Di2	Distillation reboiler 2	753	2819	77.9	S									
	Potential recovery	-1162	1657											
	Net energy		1657				Potential recovery:						-1162	
	Electricity	46.2	E	[MJ/hr]										
	DowTherm	0	D	[MJ/hr]										
	Heating steam		S	[MJ/hr]										
	Direct fuel use	0	F	[MJ/hr]										
	Heating natural gas	0	G	[MJ/hr]										
	Energy input requirement	2819		[MJ/hr]										
	Cooling water	-4744		[MJ/hr]										
	Cooling refrigeration			[MJ/hr]										
	Potential heat recovery	-1162		[MJ/hr]										
	Net energy	1657		[MJ/hr]										

Graph of Cumulative Energy Requirements

Cumulative Energy Input

