alpha-Methylstyrene as a byproduct of acetone and phenol production [98-83-9]

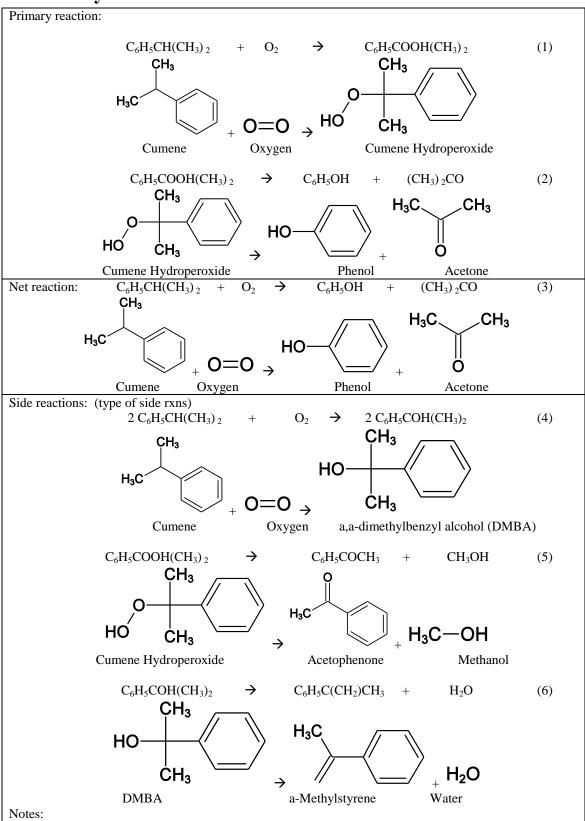
CONTENTS OF FACTORY GATE TO FACTORY GATE

LIFE CYCLE INVENTORY SUMMARY

Chemistry	2
Process Summary	
Summary of LCI Information	8
Process Diagram Interpretation Sheet	9
Process Diagram or Boundary of LCI	10
Mass Balance of Chemicals in Each Process Stream	14
Graph of Cumulative Chemical Losses through Manufacturing Process	18
Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process1	19
Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process	20
Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms),
and Assumed Heat Recovery from Hot Streams Receiving Cooling	21
Graph of Cumulative Energy Requirements	22

Authors	E. Vozzola
Peer reviews, name (date)	Reviewed by MR Overcash on 11-8-2016: route, stoichiometry, and calculations reviewed and found to be representative.
Gtg report last modified on	11-8-2016
Additional notes	

Checked for database consistency on	11-8-2016
First gtg version finalized on	11-8-2016
Modification history, Author (date)	EMV (11-8-2016)


Products	Acetone, Phenol, acetophenone, alpha-methylstyrene
Standard inputs	cumene, Air

Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard methods of engineering process design, and technical reviews. These reports are intended to be representative of industrial production based on the stated route.

Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration of these data with lci data based on other methodologies is the responsibility of the user. Each report may be updated to improve model accuracy or representativeness.

Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999 - present.

Chemistry

Process Summary

Literature

Note: This gate-to-gate life cycle inventory (gtg lci) shows production of alpha-methylstyrene (AMS) as a byproduct of acetone and phenol production. AMS is formed in Reactor 2, separated and purified as a byproduct. This gtg lci should not be used as the default route to acetone, phenol, or acetophenone because AMS is typically converted back to cumene and recycled, see GTGID 67-64-1.

Approximately 83% of the acetone produced worldwide is manufactured from cumene as a coproduct with phenol [Acetone, Ullmann's]. Cumene Hydroperoxide Process for Phenol and Acetone: Benzene is alkylated to cumene, and then is oxidized to cumene hydroperoxide (CHP), which in turn is cleaved to phenol and acetone, see Reaction 3 in the Chemistry section above.

One kilogram of phenol production results in ~0.6 kg of acetone or about ~0.40-0.45 kg of acetone per kilogram of cumene used. Besides cumene hydroperoxide, both dimethylbenzyl alcohol (DMBA) and acetophenone are also formed as byproducts during this oxidation.

	KO-	SRI and	Allied/UOP-	Ullmann's	This Design
	Acetone	Hercules- Ullmann's	Ullmann's	Phenol	
Temperature (C)	80-130	90-120	80-100	80-120	100 C
Pressure		4.5-6 bar	1 atm	1-7atm	6 atm
Yield	90-95%	94%			94%
CHP Conc	20-40%			20-40%	25%
Off gas				Cooled to ~ 0C	Cooled to 25 °C to recycle methanol
Selectivity for oxidation		90-94%	92-96%		97%
Heat of oxidation of cumene		-117 kJ/mole			-117 kJ/mole
Heat of cleavage reaction		-252 kJ/mole CH			-252kJ/mole CHP
Selectivity(table 4) for Cleavage		99.5%			100%
Temperature	60-100	<95C	60-80	40-80	80
Reflux		2.8kg acetone/kg cumene hydroperoxide			None

Table 1. Reaction conditions

Chemicals Used in this design: Cumene, cumene hydroperoxide, phenol, acetone, sulfur dioxide

Minors: cumylphenols, acetophenone, dimethylbenzyl alcohol (DMBA), alpha-methylstyrene, and hydroxyacetone.

US6225513 give an example of acetone/phenol production that includes by-products and the concentration of each of the components.

SRI-Phenol

Cumene is oxided with air at 103-113 C and 4.4 atm to convert about 20% of the cumene to the hydroperoxide solution. It is then decomposed to phenol and acetone by using sulfuric acid as a catalyst. The phenol and acetone by residual unreacted cumene are separated by distillation. The cumene is recycled

to the reactors. The heavy ends formed are cracked to recover some of the phenol. The yield is 94.3% of theoretical. The process is similar to the BP-Hercules process.

Cumene oxidation – Ullmann's

Fresh and recycled cumene are fed to the reactor, which may operate at 8-12 wt% cumene hydroperoxide. The outlet of stream may contain 25-40 wt% cumene hydroperoxide.

The molar selectivity of the cleavage to phenol and acetone is higher than 99.5% at temperature below 70 C, But it decreases at higher temperature as increasing amounts of DMBA and acetophenone are formed. The reactor temperature is maintained below 95 C by refluxing approximately 2.8 kg acetone per kilogram cumene hydroperoxide.

US7141700

The decomposing vessel is preferably operated at temperature from about 50 C to about 80 C and a pressure from about 115 kPa to about 618 kPa.

Industrial Organic chemistry	
$C_6H_5CH(CH_3)_2 + O_2 \rightarrow C_6H_5COOH(CH_3)_2$	$\Delta H = -117 \ kJ/mol$
$C_6H_5COOH(CH_3)_2 \rightarrow C_6H_5OH + (CH_3)_2CO$	$\Delta H = -252 \text{ kJ/mole}$

Besides cumene, the water phase is condensed from the off-gas, in which MHP is present. After treatment with diluted caustic soda, the cumene is recycled to the oxidation unit. The water phase is treated at temperature above 100 C and a high pH to decompose the MHP to methanol. Disposal of MHP in the aqueous stream is not allowed since it is toxic to fish.

Caustic soda to remove organic acids and traces of phenol.

Cumene Process - KO

Cumene processes consist of two fundamental chemical reactions: cumene is oxidized with air to form cumene hydroperoxide, and cumene hydroperoxide is cleaved to yield phenol and acetone. In this process, approximately 0.46 kg of acetone and 0.75 kg of phenol are produced per kg of cumene feedstock. The overall yield for the cumene process is 96 mol %.

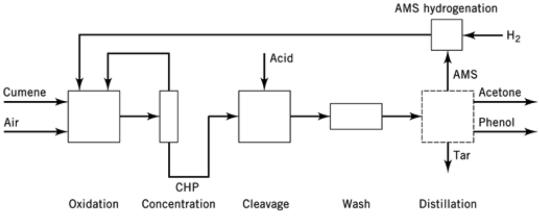


Fig. 1. Cumene process for phenol production.

	0	D 1	
Chemical Name	CAS	Formula	Short Name
Cumene	98-82-8	C9H12	
Cumene Hydroperoxide	80-15-9	C9H12O2	CHP
Dimethylbenzyl alcohol	617-94-7	C9H12O	DMBA
Formic acid			
Acetic acid			
Methyl Hydroperoxide			MHP – off gas
Methanol			
Acetophenone	98-86-2	C8H8O	ACP
a-methylstyrene	98-83-9	C9H10	AMS
Dicumyl peroxide	80-43-3	C18H22O2	DCP
Phenol	108-95-2		
Acetone	67-64-1		

Table 2. Chemicals Used in design

Acetophenone byproduct – added 2016

Production of acetophenone is satisfied through recovery as a byproduct from phenol and acetone production (Ullmann's, 2000; Kirk Othmer, 2001; Kirk Othmer, 2011). Acetophenone is a colorless liquid with a sweet orange blossom odor. It is used as an intermediate in the production of synthetic resins, pharmaceuticals, and fragrances (Ullmann's, 2000). Phenol and acetone are produced as main products with acetophenone, alpha-methylstyrene, hydroxyacetone, and mesityl oxide produced as byproducts in a process known as the Hock process (Kirk Othmer, 2011). The yield of byproducts varies by manufacturer and can be optimized with adjustments to the inputs. Typical byproduct yields are not readily available in the literature. The yields are likely adjusted frequently to reflect market demand. In this gtg, 1.8% of the cumene hydroperoxide formed reacts to acetophenone.

Acetophenone is isolated from phenol residues via separation methods such as azeotropic distillation (Ullmann's 2000; Kirk Othmer, 2001; WO2009055535 A2). Binary azeotropes of phenol and acetophenone are shown in Table 3.

P, atm	Phenol	Acetophenone	Azeotrope	Mass fraction
	b. p., °C	b. p., °C	b. p., °C	acetophenone
0.0658	102.7	115.4	118.3	0.707
0.132	119.7	133.9	135.9	0.725
0.340	146.1	182.7	163.6	0.803
0.680	168.3	184.9	187.2	0.880
1.00	181.9	201.8	201.8	0.939
1.07	184.3	204.4	204.4	0.950
1.34	192.9	213.8	213.8	0.994
1.68	201.8	223.7		
2.02	209.4	232.1		
3.31	232.3	257.4		

Table 3. Azeotropes of phenol and acetophenone

This gtg shows vacuum distillation of acetophenone/phenol at 0.132 atm to separate acetophenone from the phenol residue.

Route Review 2016 – with respect to acetophenone production

KO (2001), Ul (2000), and ReachCentrum (2010) consistent with current route.

KO and Ul give four production methods:

1. as a byproduct of phenol manufacture (via cumene hydroperoxide)

- 2. directly from cumene hydroperoxide
- 3. ethylbenzene + O2 (selectivity limited to 25%)

4. benzene + O2 (no longer used/not of industrial importance)

Method 1 is shown in this report. KO (2001), Ul (2000), and ReachCentrum 2010 report indicate that world production is met through production as a byproduct of phenol manufacture, Method 1. WO 2009055535 A2 (2009) gives a method for optimizing this production from the phenol process. We conclude that the most representative route is Method 1. Note that acetophenone is also called methyl phenyl ketone.

LCI design

In this design, acetone is produced using the cumene-to-acetone process, but a modification is made to recover AMS. Cumene is oxidized with air to form cumene hydroperoxide (CHP). The peroxide is subsequently decomposed to acetone and phenol using a strong mineral acid as a catalyst. Acetophenone and AMS are produced as byproducts.

The cumene oxidation reactor operates at 100 °C and 6 atm. The reaction is exothermic with a heat of reaction of -117 kJ/mole. The final CHP concentration is about 25% with the balance being reactants. In this oxidation process, dimethylbenzyl alcohol (DMBA) and acetophenone (ACP) is formed as by-products. The off-gas from the reactors is cooled to recycle the methanol, which is a byproduct of acetophenone reaction, and cumene back to the reactor. The product from the oxidation unit is concentrated to about 90 wt% CHP with vacuum distillation, the so-called concentration unit, at 0.2 atm. Cumene is separated and recycled back to the reactor. The concentrated CHP is sent to cleavage reactor and decompose into acetone and phenol (using sulfuric acid, about 0.01 kg/kg phenol or 0.007 kg/kg cumene), which is an exothermic process with a heat of reaction of -252 kJ/mole. The neutralized material is sent to recovery unit to get acetone and phenol. The a-methylstyrene is recovered from distillation column 3 and purified in distillation column 3b. The overhead from distillation column 3a contains primarily cumene and is recycled to the reactor. The overhead from column 3b contains 99.7% pure AMS and is cooled to 25 °C at 1 atm and sent as the main product of this gtg lci. The bottoms from distillation column 3b contain phenol and are sent as a byproduct.

Note: In practice, the product from the cleavage reactor (R2) is neutralized using sodium hydroxide (about 0.01 kg/kg phenol or 0.007 kg/kg cumene input), to separate the sulfuric acid used as catalyst and the formic and acetic acids formed as byproducts in the reactor. The sulfuric acid catalyst and formic and acetic acid byproducts are not shown in this gtg due to small amounts used/formed. Thus, the subsequent neutralization is also not shown.

References

Engenharia Quimica, Cumune oxidation to cumene hydroperoxide, University of Tecnica de Lisboa

Kirk Othmer (2001), Kirk Othmer Encyclopedia of Chemical Technology, Ketones (Y.-L. Hwang and T. C. Bedard)

Kirk Othmer (2010), Kirk Othmer Encyclopedia of Chemical Technology, Phenol (Jim Wallace, M.W. Kellogg Company)

Kirk Othmer (2010, 2011), Kirk Othmer Encyclopedia of Chemical Technology, Acetone (William L. Howard, the Dow Chemical Company)

Ullmann's (2000), Ullmann's Encyclopedia of Industrial Chemistry, Ketones (H. Seigel and M. Eggersdorfer)

Ullmann's (2010), Ullmann's Encyclopedia of Industrial Chemistry, Acetone (Stylianos Sifniades, and Alan B. Levy)

Ullmann's (2010), Ullmann's Encyclopedia of Industrial Chemistry, Phenol (Manfred Weber, Markus Weber, and Michael Kleine-Boymann)

WO2009055535 A2 (2009) recovery of acetophenone during the production of phenol (J. R. Black, L. W. Payne, P. E. Unger)

Critical parameters

Conversion / Yield information from both reactor	ors		
		Conversion of or	Conversion of or
		Yield from Cumene	Yield from CHP
Total conversion in reactor 1:	From mass balance	99.8%	
(% of reactant entering the process that reacts)			
Total per pass conversion in reactor 1:	From mass balance	19.6%	
(% of reactant entering the reactor that reacts)			
Total yield of reactor 1:	From mass balance	92.2%	
(% yield cumene peroxide produced in the			
reactor based on reactant input to process)			
Total conversion in reactor 2:	From mass balance		NA
(% of reactant entering the process that reacts)			
Total per pass conversion in reactor 2:	From mass balance		100%
(% of reactant entering the reactor that reacts)			
Total yield of reactor 2:	From mass balance		100%
(% yield produced in the reactor based on			
reactant input to process)			
Total yield of Process:	From mass balance	6%	
(% yield produced by the overall process			
based on reactant input to process)			
Notes: Total yield of process from cumene with	respect to AMS is 6%.	The yield from cumene	for all products
(phenol, acetone, acetophenone and AMS) is >9	0%.		

Product purity		
	AMS	Comments
Used here	99.7%	

Summary of LCI Information

Standard inputs							
UID	Name	Flow	Purity	Units	Comments		
98-82-8	Cumene	1.66E+04	-	[kg/hr]			
UIDAir	Air	1.84E+04	-	[kg/hr]			
	Total	3.50E+04		[kg/hr]			
Non-reactin	g inputs						
UID	Name	Flow	Purity	Units	Comments		
	Total	0		[kg/hr]			
Ancillary in	puts						
UID	Name	Flow	Purity	Units	Comments		
	Total	0		[kg/hr]			
Products							
UID	Name	Flow	Purity	Units	Comments		
67-64-1	Acetone	7430	99.7	[kg/hr]			
108-95-2	Phenol	1.20E+04	99.9	[kg/hr]			
98-86-2	acetophenone	240	100	[kg/hr]			
98-83-9	alpha-methylstyrene	1000	0.997	[kg/hr]			
	Total	2.06E+04		[kg/hr]			
Benign outf	lows						
UID	Name	Flow	Purity	Units	Comments		
7727-37-9	Nitrogen	1.41E+04	-	[kg/hr]			
7732-18-5	Water	119	-	[kg/hr]			
	Total	1.42E+04		[kg/hr]			

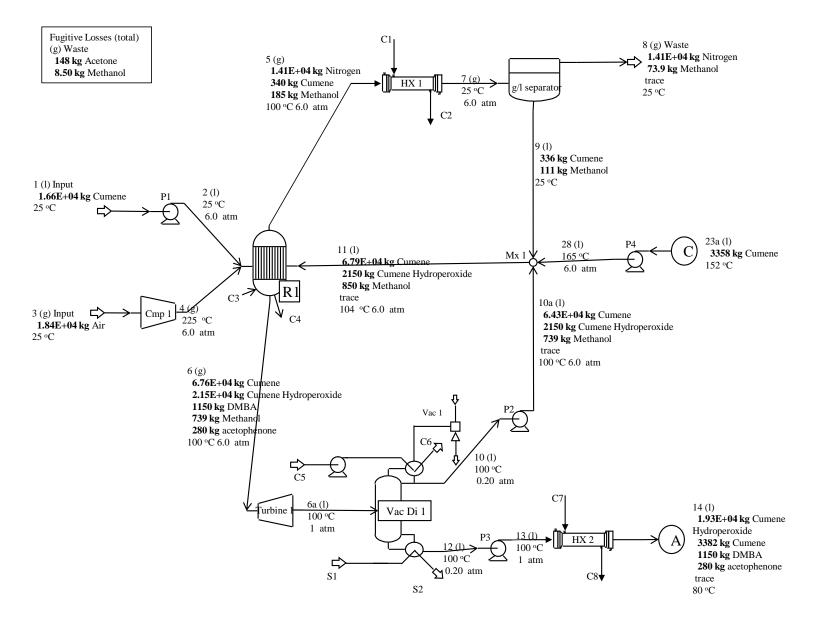
Process emissions							
UID	Name	Gas	Liquid	Solid	Solvent	Units	Comments
98-82-8	Cumene	3.40	0	0	0	[kg/hr]	
98-86-2	acetophenone	0	31.2	0	0	[kg/hr]	
108-95-2	Phenol	0	11.8	0	0	[kg/hr]	
67-64-1	Acetone	148	0	0	0	[kg/hr]	
67-56-1	Methanol	82.4	0.732	0	0	[kg/hr]	
	Total	234	43.8	0	0		

Mass balance	
Total inputs	3.50E+04
Total outflows	3.52E+04
Net input	-156

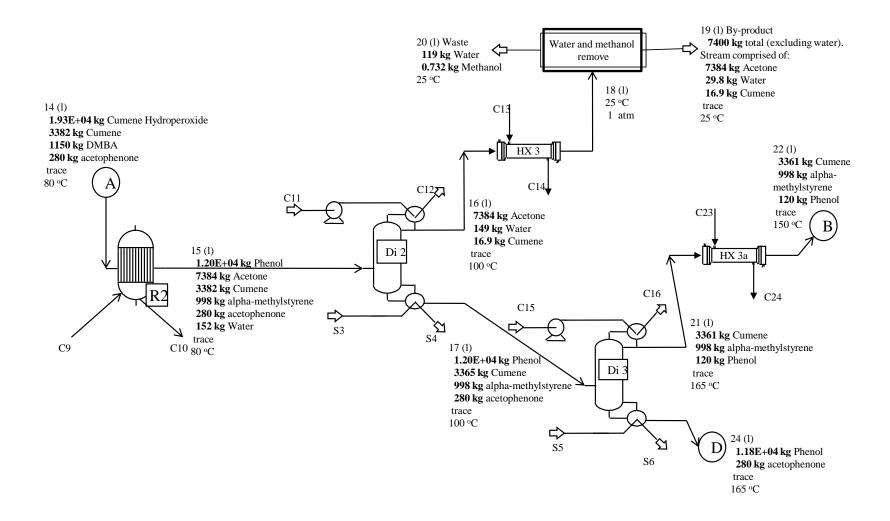
Energy use			
Energy type	Amount	Units	Comments
electricity	5062	[MJ/hr]	Net electricity use at plant
heating steam	8.05E+04	[MJ/hr]	heating by steam (0.85 efficiency included)
Net input requirement	8.56E+04	[MJ/hr]	Net of energies input to system
cooling water	- 1.20E+05	[MJ/hr]	net cooling by cooling water
potential recovery	- 3.73E+04	[MJ/hr]	potential energy recovery (negative)
Net energy	4.83E+04	[MJ/hr]	Net input requirement - potential recovery

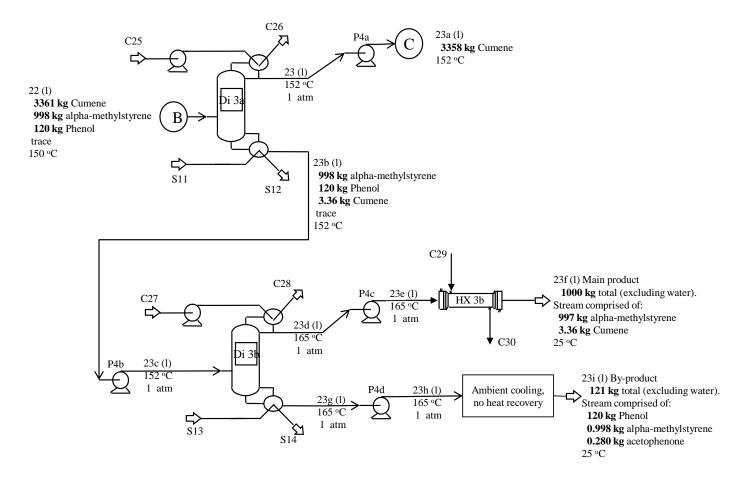
Process Diagram Interpretation Sheet

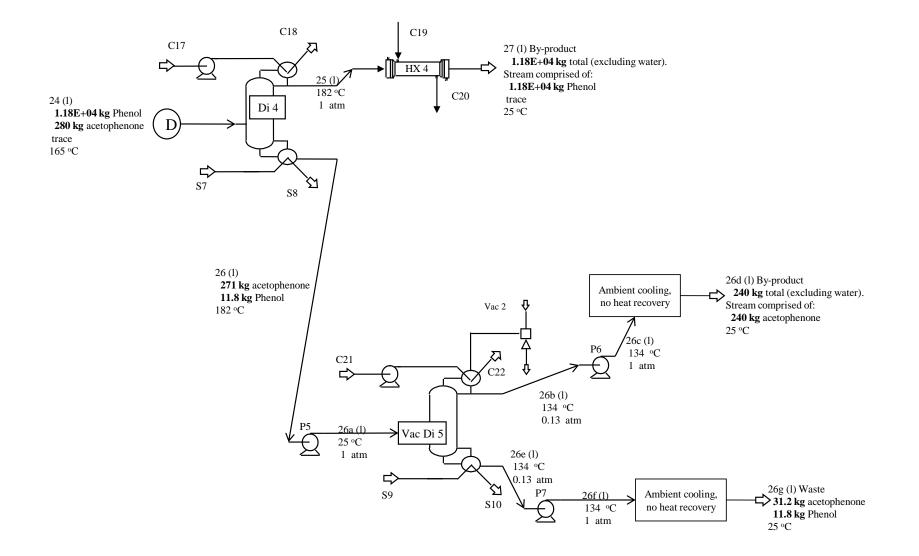
1) As much as possible, standard symbols are used for all unit processes.


2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet

- 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
- 4) The process numbering is as follows,
 - generally numbers progress from the start to the end of the process
 - numbers are used for process streams
 - C i , i = 1,..n are used for all cooling non-contact streams
 - S j, j = 1,...n are used for all steam heating non-contact streams
- 5) Recycle streams are shown with dotted lines


For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm


Process Diagram or Boundary of LCI


Steam enters the process as a gas at 207 °C and leaves as a liquid at 207 °C. Cooling water enters at 20 °C and leaves at 50 °C. Unless otherwise indicated, all processes are at 1 atm and 25 °C.

10

Mass Balance of Chemicals in Each Process Stream

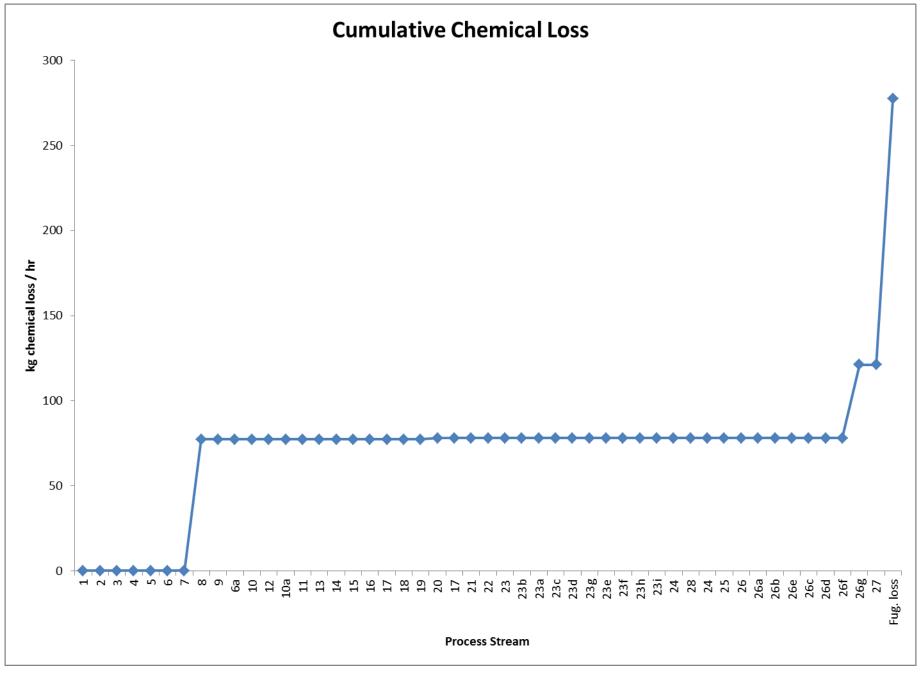
All flow rates are given in kg / hr.

Physical state of chemical losses: Gas, Liquid, Solid.

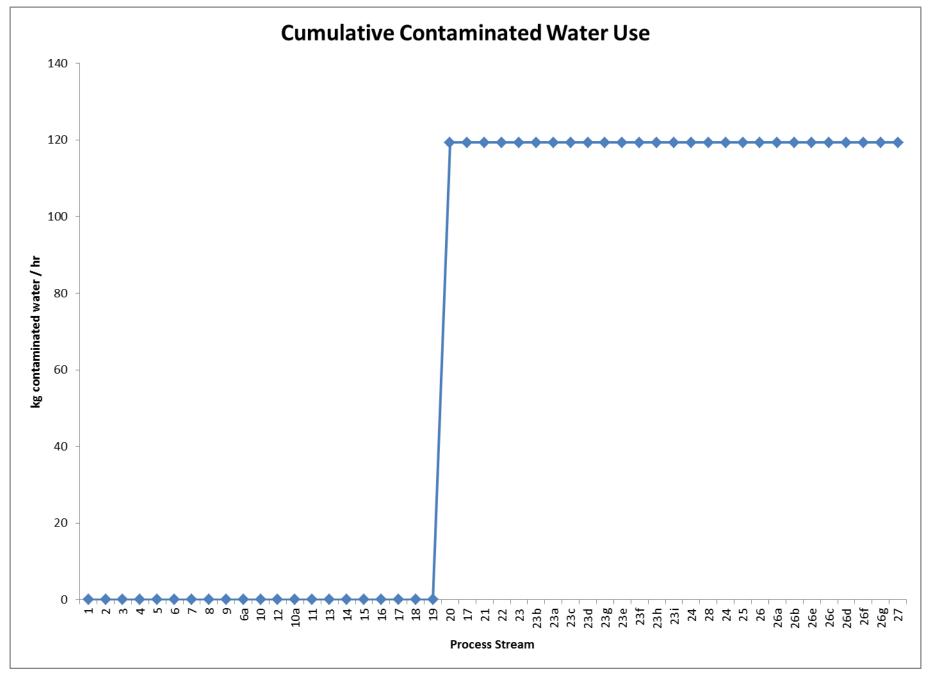
	Comments	Streams	Temp [C]	٩	Phase	Total Flow	Cumene	Cumene Hydroperoxide	DMBA	acetophenone	alpha- methylstyrene	Dicumyl Peroxide	Phenol	Acetone	Air	Nitrogen	Oxygen	Hydrogen	Methanol	Water
Input	0	1				' 1.66E+04	1.66E+04	0 1	_				-	`	`	-	-	-	-	-
input		2				1.66E+04	1.66E+04													
Input		3				1.84E+04									1.84E+04				ĺ	
		4	225			1.84E+04										1.41E+04	4284		1	
		Stream 11:Recy	cle input		10	7.09E+04	6.79E+04	2150	0.115	0.0280	0	0	0	0	0	0	0	0	850	0 0
		Stream 11:Recy	cle calcu	lated		7.09E+04	6.79E+04	2150	0.115	0.0280	0	0	0	0	0	0	0	0		
		Stream 11:Recy	cle resid	ue		7.77E-03	1.45E-03	4.72E-05	2.46E-09	5.99E-10	0	0	0	0	0	0	0	0	6.28E-03	6 0
R1	1.61E+04		Cumene		:			% of reactor												
	507		Cumene	-	:	is converted	1		1 /										 	
	355	kg	Cumene Hydrope		:	is converted	in rxn (16.5	% of reactor	input)											
		Input to reactor			:	1.06E+05	8.45E+04		0.115	0.0280	0	0	0	0	0	1.41E+04			850	0
		R1 Reaction Co		1	:		-1.00										-1.00			
		R1 Conversion			:	0											-4284			
		R1 Conversion			:	134	-134	134									-134		ļ	
		R1 Reaction Co		2	:	-	-1.00	-1.00	2.00											
		R1 Conversion			:	0	-507	-643	1150										 	
		R1 Conversion			:	4.23	-4.23	-4.23	8.45	4.00									1.00	
		R1 Reaction Co		3	:	0		-1.00		1.00									1.00	
		R1 Conversion		/brl		0 2.33		-355 -2.33	1	280 2.33									74.7 2.33	
		Flow out of	s [kgmoi/	0.240	•	2.33 1.06E+05	6.80E+04		1150		0	0	0	0	0	1.41E+04	0	0		
		reactor		0.240	•			2.132+04	1150	200	0	0	0	0	0	1.412+04	0	0	524	0
		Primary product			:	Cumene Hyc			NA	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA
		Total conversion Per pass conve					99.8 19.6		NA	NA	INA	NA	NA	INA	-0	NA -0			NA	INA
		Total yield from			•		92.2		INA	INA						-0	95.1			+
Display in PFD		5	100	6.00	a	1.47E+04	340	114							0	1.41E+04		0	185	
Display in PFD		6				9.13E+04	6.76E+04	2.15E+04	1150	280	0	0	0	0			0	-		
		7	25.0			1.47E+04	340		0	0	0	0	0	-	-	1.41E+04	0	0		
Waste		8	25.0			-1.42E+04	-3.40									-1.41E+04			-73.9	
Display in PFD		9	25.0			447	336		0	0	0	0	0	0	0	0	0	0		
	Feed	6a	100		Ι	9.13E+04	6.76E+04	2.15E+04	1150	280	0	0	0	0	0	0	0	0		
Di <1>		percentage of ir			:		95.0	10.0	0.0100	0.0100									99.9	
L		percentage of in			:		5.00	90.0	100.0	100.0	100	100	100	100	100	100	100	100		
		Boiling Tempera			1:		152		202	202								<u> </u>	64.8	
	Distillate	10	100			6.71E+04	6.43E+04	2150	0.115	0.0280	0	0		-		-	•	-		
Disalau in DED	Bottoms	12				2.42E+04	3382	1.93E+04	1150	280	0	0	÷	-				-		
Display in PFD		10a	100			6.71E+04	6.43E+04	2150	0.115	0.0280	0	0		-				-		
Display in PFD	1	11 13	104 100			7.09E+04 2.42E+04	6.79E+04 3382	2150 1.93E+04	0.115	0.0280	0	•		-				•		
Display in PFD	l	13	80.0			2.42E+04 2.42E+04	3382		1150		0	-	-	-				-		
Display III PFD		14	00.0	1.00	1	2.420+04	336 2	1.930+04	1150	200	0	0	0	0	0	0	0	U	0.739	<u> </u>

	Comments	Streams	Temp [C]	٩	Phase	Total Flow	Cumene	Cumene Hydroperoxide	DMBA	acetophenone	alpha- methylstyrene	Dicumyl Peroxide	Phenol	Acetone	Air	Nitrogen	Oxygen	Hydrogen	Methanol	Water
R2	1.93E+04	kg	Cumene		:	is converted	in rxn (100 °	% of reactor in	nput)	•	•									
	1150	ka	Hydrope DMBA	eroxide		is converted	in ryn (100 9	% of reactor in	oput)											
		Input to reactor	DIVIDA			2.42E+04	3382		1150	280	0	0	0	0	0	0	0	0	0.739	
		R2 Reaction Co	efficient ?	1		2.421+04	5502	-1.00	1100	200	0	0	1.00	1.00	0		0	0	0.735	
		R2 Conversion				0		-1.93E+04					1.20E+04	7384						
		R2 Conversion		hr]		127		-127					127	127						
		R2 Reaction Co			:				-1.00		1.00									1.00
		R2 Conversion			:	0			-1150		998									152
		R2 Conversion		hr]	:	8.45			-8.45		8.45									8.45
		Flow out of read			:	2.42E+04	3382	0	0	280	998	0	1.20E+04	7384	0	0	0	0	0.739	152
		Primary product			:	Acetone														
		Total conversion			:			NA	NA	NA	NA	NA		NA	-0	NA	NA	NA		NA
		Per pass conver					-0		100	-0	NA			NA					-0	NA
		Total yield from						100						NA						
Display in PFD		15			I	2.42E+04	3382	0						7384	0	0	0	0		
Di <2>		percentage of in					0.500	0	-	-	-	0	-				100		100	98.0
		percentage of in					99.5	100	100			100		0	100	100	100	100		
Disalau in DED		Boiling Tempera			:	7550	152	0	0	202		0	182	56.3	0				64.8	100
	Distillate	<u>16</u> 17		1.00	1	7550	16.9 3365	0	-	-		0		7384	0	-		-		149
Display in PFD	Bottoms	17		1.00 1.00	1	1.66E+04 7550	<u> </u>	0	-			0		0 7384	0	-		-	-	3.04 149
By-product		19		1.00	1	-7430	-16.9	0	0	0	0	0	0	-7384	0	0	0	0	-7.39E-03	-29.8
Waste		20		1.00		-120	-10.9	0	0	0	0	0	0	-7304	0	0	0	0	-0.732	-119
Display in PFD	Feed	17	100	1.00		1.66E+04	3365	0	0	-		0	1.20E+04	0	-	-				
Di <3>		percentage of in					99.9			0.100		-	1.00	-			-	-		
		percentage of in			:		0.1000	100	100			100	99.0	100	100	100	100	100	100	100
		Boiling Tempera			:		152			203			182							100
	Distillate	21	165	1.00		4479	3361	0	0	0.280		0	120	0	0	0	0	0	0	0
Display in PFD	Feed	22	150	1.00	I	4479	3361	0	0	0.280	998	0	120	0	0	0	0	0	0	0
Di <3a>		percentage of in			:		99.9			0	-		0							
		percentage of in			:		0.1000	100	100			100		100	100	100	100	100	100	100
		Boiling Tempera					152			202			182							
	Distillate	23		1.00		3358	3358	0	-	-	-		-	_		-	-	-	-	-
	Bottoms	23b		1.00		1121	3.36	0	-	0.200		0				-	-	-	-	-
Display in PFD	E l	23a	152	1.00		3358	3358			-		0	-	-						-
Di 20h	Feed	23c	152	1.00		1121	3.36	0	0	0.200		0	120	0	0	0	0	0	0	0
Di <3b>		percentage of in percentage of in					100	100	100	0 100		100	-	100	100	100	100	100	100	100
		Boiling Tempera				+	152	100	100	202		100	182	100	100	100	100	100	100	100
	Distillate	23d	165	1.00	I	1000	3.36	0	0	-	-	0	0	0	0	0	0	0	0	0
	Bottoms	23g	165	1.00		121	0.00					0								
	20110	23e		1.00		1000	3.36	-	-			0	0						-	-
Main product		23f		1.00	1	-1000	-3.36			-		0								
		23h	165	1.00		121	0		0			0	120							
By-product		23i		1.00		-121	0		0			0				0				0
Display in PFD	Bottoms	24	165	1.00	l	1.21E+04	3.36		0	280		0	1.18E+04	0	0	0	0	0	0	3.04
		28				3358	3358		0											
Display in PFD	Feed	24				1.21E+04	3.36		0			0			0	0	0	0	0	
Di <4>		percentage of in	nput in dis	stillate			100			3.00			99.9							100

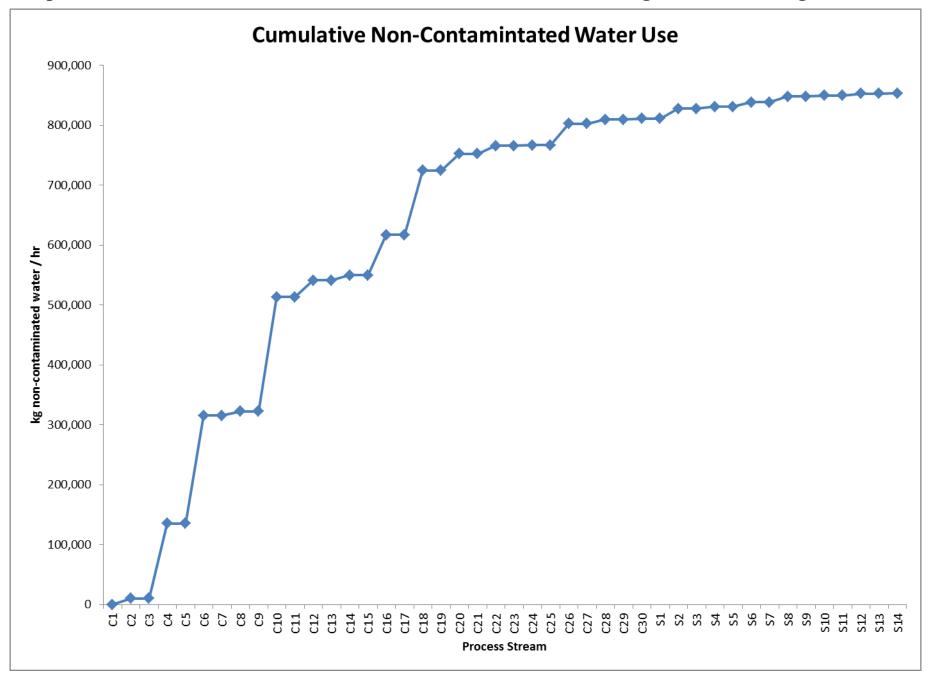
updated on 11/8/2016 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.


	Comments	Streams	Temp [C]	۵.	Phase	Total Flow	Cumene	Cumene Hydroperoxide	DMBA	acetophenone	alpha- methylstyrene	Dicumyl Peroxide	Phenol	Acetone	Air	Nitrogen	Oxygen	Hydrogen	Methanol	Water
		percentage of in	put in bo	ttoms	:		0	100	100	97.0	100	100	0.1000	100	100	100	100	100	100	
		Boiling Temperature (Tb) [oC]		182			152			203			182							100
	Distillate	25	182			1.18E+04	3.36	-	-			0	1.18E+04	0	0	-	_	-	0	
Display in PFD		26	182			283	0	-	-		0	0	11.8	0	0	-	-	-	0	-
-	Feed	26a	25.0		Ι	283	0	0	0		0	0	11.8	0	0	0	0	0	0	0
Di <5>		percentage of in			:					88.5			0							
		percentage of in			:		100	100	100	11.5	100	100	100	100	100	100	100	100	100	100
	Distillation	Boiling Tempera	ture (1b)		:	0.40	0	0	0	202	0	0	182				0	0		
	Distillate Bottoms	26b 26e	134 134			240 43.1	0	-	-	-		0	0 11.8	0	0		-	-	0	-
	DOLLOINS	260	134			240	0	-	-	-	-	0	0.11	0	0	-	_	-	0	
By-product		200 26d	25.0			-240	0	÷	-			0	0	0	0	-	_	-	0	
By-product		200 26f	134			43.1	0	÷	-			0	11.8	0	0	-	-	-	0	-
Waste		26g	25.0	1.00		-43.1	0	÷	0	-	0	0	-11.8	0	0	-	0	-	0	_
By-product	0.999	27	25.0			-1.18E+04	-3.36	•			•	0	-1.18E+04	0	0				0	
2) p.0000		Product purity (%			:	0.997	0.00	Ŭ		0.00										0.01
		Main product	-/		:	alpha-methyl	styrene													
		Overall Rxn coe	fficients		:	Í	-1.00				1.00						-0.500			1.00
		Total yield of pro reactant)	ocess (fro	om	:		6.11				NA						NA			NA
Waste		Fug. loss			g	-156	0	-	0	0	0	0	0	-148	0	-	0	0	-8.50	0
		Input Sum				3.50E+04	1.66E+04	0	0	0	0	0	0	0	1.84E+04	0	0	0	0	0
		Replacement of of reactants	fugitive e	emissions	:	0	0										0			
		Total Input (Inpu Replacement)	it + Fugit	ive	:	3.50E+04	1.66E+04	0	0	0	0	0	0	0	1.84E+04	0	0	0	0	0
		Product Sum			:	2.06E+04	23.6	0	0	249	998	0	1.20E+04	7384	0	0	0	0	7.39E-03	32.9
		Main product flor	W		:	1000	3.36	0	0	0	997	0	0	0	0	0	0	0	0	0
		Net Input (in - ou fugitives)	ut, omittir	ng	:	-7.16E-03														

Туре	Label	Temp, C	P, atm	Phase	Total flow	Steam	Water
Input	C1	20.0	1.00		1.03E+04		1.03E+04
Cooling out	C2	50.0	1.00	1	-1.03E+04		-1.03E+04
Input	C3	20.0	1.00		1.25E+05		1.25E+05
Cooling out	C4	50.0	1.00		-1.25E+05		-1.25E+05
Input	C5	20.0	1.00		1.80E+05		1.80E+05
Cooling out	C6	50.0	1.00		-1.80E+05		-1.80E+05
Input	C7	20.0	1.00		6978		6978
Cooling out	C8	50.0	1.00		-6978		-6978
Input	C9	20.0	1.00		1.91E+05		1.91E+05
Cooling out	C10	50.0	1.00		-1.91E+05		-1.91E+05
Input	C11	20.0	1.00		2.77E+04		2.77E+04
Cooling out	C12	50.0	1.00		-2.77E+04		-2.77E+04


updated on 11/8/2016 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Input	C13	20.0	1.00	1	8577		8577
Cooling out	C14	50.0	1.00	-	-8577		-8577
Input	C15	20.0	1.00	1	6.74E+04		6.74E+04
Cooling out	C16	50.0	1.00	-	-6.74E+04		-6.74E+04
Input	C17	20.0	1.00	1	1.07E+05		1.07E+05
Cooling out	C18	50.0	1.00	-	-1.07E+05		-1.07E+05
Input	C19	20.0	1.00	1	2.80E+04		2.80E+04
Cooling out	C20	50.0	1.00	1	-2.80E+04		-2.80E+04
Input	C21	20.0	1.00	1	1.33E+04		1.33E+04
Cooling out	C22	50.0	1.00	1	-1.33E+04		-1.33E+04
Input	C23	50.0	1.00	1	821		821
Cooling out	C24	50.0	1.00	1	-821		-821
Input	C25	50.0	1.00	1	3.62E+04		3.62E+04
Cooling out	C26	50.0	1.00	1	-3.62E+04		-3.62E+04
Input	C27	50.0	1.00		6928		6928
Cooling out	C28	50.0	1.00	-	-6928		-6928
Input	C29	50.0	1.00	1	1625		1625
Cooling out	C30	50.0	1.00		-1625		-1625
Input	S1	207	1.00		1.64E+04	1.64E+04	
Steam out	S2	207	1.00		-1.64E+04	-1.64E+04	
Input	S3	207	1.00	_	3054	3054	
Steam out	S4	207	1.00	-	-3054	-3054	
Input	S5	207	1.00		7494	7494	
Steam out	S6	207	1.00	-	-7494	-7494	
Input	S7	207	1.00	Ι	1.00E+04	1.00E+04	
Steam out	S8	207	1.00		-1.00E+04	-1.00E+04	
Input	S9	207	1.00	Ι	1242	1242	
Steam out	S10	207	1.00		-1242	-1242	
Input	S11	207	1.00	1	3295	3295	
Steam out	S12	207	1.00		-3295	-3295	
Input	S13	207	1.00		644	644	
Steam out	S14	207	1.00		-644	-644	


Graph of Cumulative Chemical Losses through Manufacturing Process

updated on 11/8/2016 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.


20

Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling

Energ	Energy Input [MJ / hr] Cooling Requirements [MJ / hr]													
Process Diagram Label	Unit	Energy input [MJ / 1000 kg Product]	Cumulative energy [MJ / 1000 kg Product]	To [C] (Used to determine energy type)	Energy Type	Process diagram label	Lait	Energy Loss	Cumulative cooling water energy	Tef [C] (for recovery efficiency)	Recovery Efficiency	Energy Recovered	Cumulative recovered [MJ / 1000 kg Product]	
P1	Pump 1	17.5	17.5		Е	R1	Reactor 1	-1.84E+04	-1.84E+04	100	0.250	-4612	-4612	
Cmp1	Compressor 1	4913	4930		Е	Hx1	Heat exchanger 1	-1524	-2.00E+04	100	0.250	-381	-4993	
P2	Pump 2	79.4	5010		Е	Di1	Distillation condenser 1	-2.66E+04	-4.66E+04	100	0.250	-6658	-1.17E+04	
P3	Pump 3	5.96	5015		Е	Hx2	Heat exchanger 2	-1030	-4.76E+04	100	0.250	-258	-1.19E+04	
Vac1	Vacuum electricity 1	19.3	5035		Е	R2	Reactor 2	-2.82E+04	-7.58E+04	80.0	0.250	-7053	-1.90E+04	
P4	Pump 4	3.36	5038		Е	Di2	Distillation condenser 2	-4084	-7.99E+04	98.9	0.250	-1021	-2.00E+04	
Di1	Distillation reboiler 1	2.66E+04	3.17E+04	100	S	Hx3	Heat exchanger 3	-1267	-8.12E+04	100	0.250	-317	-2.03E+04	
Di2	Distillation reboiler 2	4964	3.66E+04	98.9	S	Di3	Distillation condenser 3	-9948	-9.11E+04	164	0.450	-4476	-2.48E+04	
Di3	Distillation reboiler 3	1.22E+04	4.88E+04	164		Hx3a	Heat exchanger 3a	-121	-9.13E+04	165	0.450	-54.5	-2.48E+04	
Di3a	Distillation reboiler 3a	5356	5.42E+04	151	S	Di3a	Distillation condenser 3a	-5349	-9.66E+04	151	0.450	-2407	-2.72E+04	
P4a	Pump 4a	0.0109	5.42E+04		Е	Di3b	Distillation condenser 3b	-1023	-9.76E+04	164	0.450	-460	-2.77E+04	
P4b	Pump 4b	6.71E-04	5.42E+04		Е	Hx3b	Heat exchanger 3b	-240	-9.79E+04	165	0.450	-108	-2.78E+04	
Di3b	Distillation reboiler 3b	1046	5.52E+04	164	S	Di4	Distillation condenser 4	-1.58E+04	-1.14E+05	181	0.450	-7128	-3.49E+04	
P4c	Pump 4c	0.0723	5.52E+04		Е	Hx4	Heat exchanger 4	-4133	-1.18E+05	182	0.450	-1860	-3.68E+04	
P4d	Pump 4d	9.37E-07	5.52E+04		Е	Di5	Distillation condenser 5	-1960	-1.20E+05	134	0.250	-490	-3.73E+04	
Di4	Distillation reboiler 4	1.63E+04	7.15E+04	181	S									
P5	Pump 5	9.86E-06	7.15E+04		Е									
Vac2	Vacuum electricity 2	23.7	7.15E+04		Е									
Di5	Distillation reboiler 5	2019	7.35E+04	134	S									
P6	Pump 6	0.0349	7.35E+04		Е									
P7	Pump 7	6.26E-03	7.35E+04		Е									
	Potential recovery	-3.73E+04	3.62E+04											
	Net energy		3.62E+04				Potential recovery:						-3.73E+04	

Electricity	5062	Е	[MJ/hr]
Heating steam	6.85E+04	S	[MJ/hr]
Energy input requirement	7.35E+04		[MJ/hr]
Cooling water	-1.20E+05		[MJ/hr]
Potential heat recovery	-3.73E+04		[MJ/hr]
Net energy	3.62E+04		[MJ/hr]

