EMAC sheet [UIDouterbagEMAC] Primary packaging for reusable gowns-covers CONTENTS OF FACTORY GATE TO FACTORY GATE

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling11 Conversion of Chemical Losses and Energy Requirements into Environmental Parameters, Prior to any Treatment or Discharge to the Environment Error! Bookmark not defined. Waste Management Summary..... Error! Bookmark not defined. Calculation Summary Error! Bookmark not defined.

Authors	M. Luhrs
Peer reviews, name (date)	M. R. Overcash (9-7-2010); M. R. Overcash (9-12-2010)
Gtg report last modified on	9-13-2010
Additional notes	

Checked for database consistency on	0-0-0
First gtg version finalized on	9-7-2010
Modification history, Author (date)	MKL (9-13-2010)

Products	outerbagEMAC
Standard inputs	ethylene - methyl acrylate copolymer 92 moleP E

Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard methods of engineering process design, and technical reviews. These reports are intended to be representative of industrial production based on the stated route.

Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration of these data with lci data based on other methodologies is the responsibility of the user. Each report may be updated to improve model accuracy or representativeness.

Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999 - present.

Chemistry

Primary reaction: No. reaction extrusion	into sheet.	
	reactants \rightarrow products reactants \rightarrow products	(1)
	reactants \rightarrow products reactants \rightarrow products reactants \rightarrow products	(2)
	reactants \rightarrow products reactants \rightarrow products reactants \rightarrow products	(3)
Net reaction:	reactants \rightarrow products reactants \rightarrow products reactants \rightarrow products	(4)
Side reactions: (type of side rxns)		
Neter	reactants \rightarrow products reactants \rightarrow products reactants \rightarrow products	(5) (6) (7)
Notes:		
Side reactions: (type of side rxns)		
	reactants → products reactants → products reactants → products	(9) (10) (11)
INOTES:		

Process Summary

Literature

Polyethylene(92mol%)-methyl acrylate copolymer is extruded into a sheet.

The polymer is first dried, melted in an extruder, passed through a slot die, referred to as the casting step.

We use the physical properties of polyethylene for the extruder estimate.

Extruder energy estimate The extruder energy is calculated below.¹

The heat capacity of LDPE is 2.3 J/(g*oC), the input temperature is 25 oC and the extruder temperature is 225 oC. From the heuristic we have, E=1.7301*1000*1000*2.3*(225-25)= 795*10⁶ J/hr = 795.5 MJ/hr. This value is increased by 10% due to an assumed value of 10% loss from trimming: 795.5 MJ/hr/1000 kg= x/1010.10 kg, x=803.5 MJ

The extrusion through the slot die is vitrified on a chill roll at 25 C. The enthalpy fusion at Tfusion of PE is is 7.758 kJ/gmol= 7758 J/gmol / 28.05 g/gmol = 276.6 J/g. Thus, -7.76 kJ/mol was used at the cooling roller calculation (HX1) for the return to solid phase. The amount of recoverable energy is stipulated as zero for this cooling since the temperature is likely at or near refrigeration.

LCI design

1010.1 kg of EMAC copolymer is extruded at 225C into a sheet and cooled to 25 C. 1% is trimmed before winding. This results in a sheet of Polyethylene(92mol%)-methyl acrylate copolymer. Winding energy is then added at 0.149 MJ/kg.

References Critical parameters

Product purity		
	EMAC sheet for	Comments
	outer bag	
Used here		
LiteratureSource		

¹ extruder heuristic2.doc by M. Overcash & Yong Li

Summary of LCI Information

Net input

Standard in	puts											
UID		Nat	me	Flow			Purity		Units		Comments	
UIDEMAC		eth	ylene -		10	10	-		[kg/h	r]		
		me	thyl acrylate									
co		cop	olymer 92									
	moleP E								_			
Total					10	10			[kg/h	rJ		
Non-reactin	g inputs						- ·				~	
UID		Na	me	Flow			Purity		Units	-	C	omments
		Tot	tal			0			[kg/h	rJ		
Ancillary in	puts										~	
UID		Na	me	Flow		0	Purity		Units	7	C	omments
D. L. (Tot	tal			0			[kg/h	rj		
Products		.					D				0	
UID	THE	Na	me	Flow	10	0.0	Purity		Units	7	Comments	
UIDouterbag	gEMAC	out	erbagEMAC		1000		100	[kg/		<u>;/hr]</u>		
D	í	Tot	tal	100		00			[kg/hr]			
Benign outf	lows	.		171			D		TT .		C	
UID		Nat	me	FIOW		0	Purity				C	omments
	lotal				0			[kg/n	rj			
Ducases ami	aiona											
Process entry	Nama		Cas	Liquid		5	1:4	Calv	t	Linita		Commonta
	othulon		Oas 0	Liquid	a 50		10.1	Solvent		Units [kg/hr]		Comments
UIDEMAC	methyl	le -	0		0		10.1	0		[Kg/III]		
	acrylat	-										
	copoly	mer										
	92 moleP											
	E	E										
	Total		0	0			10.1		0			
					-	1		1				1
Mass balance	e											
Total inputs						10	10					
Total outflow	VS					1010						

Energy use										
Energy type	Amount	Units	Comments							
electricity	953	[MJ/hr]	Net electricity use at							
			plant							
Net input requirement	953	[MJ/hr]	Net of energies input to							
			system							
cooling water	-744	[MJ/hr]	net cooling by cooling							
			water							
Net energy	953	[MJ/hr]	Net input requirement -							
			potential recovery							

-1.02E-03

Process Diagram Interpretation Sheet

- 1) As much as possible, standard symbols are used for all unit processes.
- 2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet
- 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
- 4) The process numbering is as follows,
 - generally numbers progress from the start to the end of the process
 - numbers are used for process streams
 - C i , i = 1,..n are used for all cooling non-contact streams
 - S j, j = 1,...n are used for all steam heating non-contact streams
- 5) Recycle streams are shown with dotted lines

For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm

Process Diagram or Boundary of LCI

Steam enters the process as a gas at 207 °C and leaves as a liquid at 207 °C. Cooling water enters at 20 °C and leaves at 50 °C.

Unless otherwise indicated, all processes are at 1 atm and 25°C.

Mass Balance of Chemicals in Each Process Stream

All flow rates are given in kg / hr Physical state of chemical losses:

Gas Liquid Solid

	Comments	Streams	Temp [C]	Ч		Phase	Total Flow	Water	Polyethylene(92mol%)- methyl acrylate copolymer	outerbagEMAC
Input	copolymer	1	25.0		1.00	S	1010		1010	
Display in PFD	extrusion	2	225		1.00		1010		1010	
Display in PFD	vitrifying	3	25.0		1.00	S	1010		1010	
Waste		3a	25.0		1.00	s	-10.1		-10.1	
Main product	sheet	4	25.0		1.00	S	-1000			-1000
		Product purity (%)				:	100			
		Main product				:	outerbagEMAC	;		
		Overall Rxn coefficien	ts			:				
		Total yield of process	(from read	ctant)		•				NA
Waste		Fugitive Losses (Tota)			g	0	0	0	0
		Input Sum				:	1010	0	1010	0
		Fugitive Replacement	of Reacta	ants		:	0			
		Total Input (Input + Fu Replacement)	ıgitive			:	1010	0	1010	0
		Product Sum				:	1000	0	0	1000
		Main product flow				:	1000	0	0	1000
		Net Input (in - out, om	itting fugit	ives)		:	5.86E-14			

Туре	Label	Temp, C	P, atm	Phase	Total flow	<u>Steam</u>	Water
Input	C1	20.0	1.00	1	5037		5037
Cooling out	C2	50.0	1.00	1	-5037		-5037

Graph of Cumulative Chemical Losses through Manufacturing Process

8

Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process

updated on 9/13/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling

Energy Input [MJ / hr]							ing Requiremen	nts [MJ /	hr]					
Process Diagram Label	Unit	Energy input [MJ / 1000 kg Product]	Cumulative energy [MJ / 1000 kg Producť]	To [C] (Used to determine energy type)	Energy Type	Process diagram label	Unit	Energy Loss	Cumulative cooling water energy	Tef [C] (for recovery efficiency)	Recovery Efficiency	Energy Recovered		Cumulative recovered [MJ / 1000 kg Product]
extruder	extruder	804	804	0	Е	Hx1	Heat exchanger 1	-744	-744	225	0		0	0
winding	winding	149	953	0	Е									
	Potential recovery	0	953											
	Net energy		953				Potential recovery:							0
	Electricity	953	E	[MJ/hr]										
	DowTherm	0	D	[MJ/hr]										
	Heating steam	0	S	[MJ/hr]										
	Direct fuel use	0	F	[MJ/hr]										
	Heating natural gas	0	G	[MJ/hr]										
	Diesel process	0	Ds	[MJ/hr]										
	Undefined	0	U	[MJ/hr]										
	Heating coal	0	С	[MJ/hr]										
	Energy input	953		[MJ/hr]										
	requirement													
	Cooling water	-/44		[MJ/hr]										
	Cooling retrigeration			[MJ/hr]										
	Potential heat	0		[MJ/hr]										
	Not operav	052		[M]/br]										
	iver energy	903												

