
EPHEDRINE

CONTENTS OF FACTORY GATE TO FACTORY GATE

LIFE CYCLE INVENTORY SUMMARY

- Chemistry
- Process Summary
- Summary of LCI Information
- Process Diagram Interpretation Sheet
- Process Diagram or Boundary of LCI
- Mass Balance of Chemicals in each Process Stream (Highlighting Chemicals that are Wastes and the Physical State when Lost)
- Energy Requirements for each Unit Process, Total Energy Requirements, and Potential Heat Recovery from Hot Streams Receiving Cooling

CHEMISTRY

Ephedrine

PROCESS SUMMARY:

Ephedrine occurs in certain plants of the genus Ephedra, which includes a large number of species. These are distributed throughout the temperate and subtropical regions of Europe, Asia and America.

Ephedrine, having the solubility reactions of a typical alkaloid is easily separated from an extract of the plant.

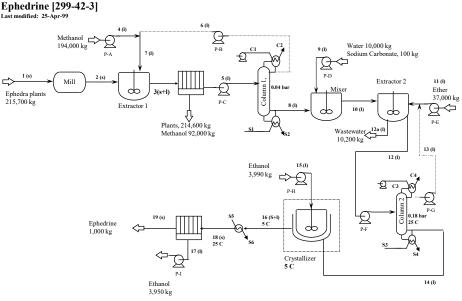
The plants are powdered and then extracted with methanol, the remainder of the plants are filtered off and the extract is concentrated and treated with sodium carbonate. The methanol from the concentration step is sent back for the extraction of the plants.

The alkaloid is then extracted with ether from the concentrated extract. Upon removal and recycle of the solvent, ephedrine is crystallized from ethanol and the final product separated from ethanol by filtration.

All solvents have been recycled with an efficiency of 90%. Distillation energy was added in the cradle to gate roll up data.

Summary of LCI information

Product:	Ephedrine
CAS RN:	299-42-3
Basis:	1 kg Ephedrine
References:	Ullmann's Encyclopedia of industrial chemistry, VCH Publishers, 1985
	Hurlbut, R.A. and Carr., J. R., J. of AOAC Intl., 81(6),1121-1127, 1998
	Yamasaki. K., et al. Chem. Pharm. Bulletin. 22(12), 2898-2902, 1974
	Yamasaki. K., Fujita, K, Chem. Pharm. Bulletin. 27(1), 43-47, 1979
	Chen, K., Ephedrine and related substances, Williams & Wilkins, 193
Plant Location:	
Comments:	1) The product is sold as 99% pure
	2) Data were calculated through process design


Materials

Inputs			
Material	Amount	Units	Comments
Ephedra plants	215.700	kg	
Methanol	194.000	kg	
Sodium Carbonate	0.100	kg	
Ether	37.000	kg	
Ethanol	3.990	kg	
Water	10.000	kg	
Total	460.790	kg	
Outputs			
Material	Amount	Units	Comments
Ephedrine	1.000	kg	Product (solid)
Plant Residue	306.600	kg	
Plants	214.600	kg	
Methanol	92.000	kg	
Wastewater	10.200	kg	
Methanol	0.055	kg	
Sodium Carbonate	0.090	kg	
Water	10.000	kg	
Ephedrine	0.055	kg	
Ethanol	3.950	kg	
Fugitive Emissions	139.040	kg	
Ethanol	0.040	kg	
Ether	37.000	kg	
Methanol	102.000	kg	
Total	460.790	kg	

D1	206.600	1				
Plant Residue	306.600					
<i>Plants</i>	214.600	-				
Methanol	92.000	-				
Wastewater	10.200	-				
Methanol	0.055	-				
Sodium Carbonate	0.090	-				
Water	10.000	-				
Ephedrine	0.055	-				
Ethanol	3.950	-				
Fugitive Emissions	139.040	-				
Ethanol	0.040	- U				
Ether	37.000	-				
Methanol	102.000					
Total	460.790	kg				
Energy Requireme	ents	-				
Concept	Amount	Units	Comment	5		
Electricity	39,868	kJ				
HeatingSteam	3.36E+07	kJ				
HeatingFuel	na	na				
CoolingWater	-3.36E+07	kJ				
CoolingRefrigerant	-298.82	kJ				
Cooling other fluid	na	na				
Potental Heat Recovery	0.00	kJ				
Net Energy	3.36E+07	kJ	Σ (Heat, E	lectricity, I	Potential	Heat Recovery
Process Emissions						
Chemical		Amount			Units	Comments
	Air	Liquid	Solid	Solvent		
Ephedrine		0.055			kg	
Ethanol	0.004		0.40	3.950	kg	
Ether	0.074		3.63		kg	
Methanol	0.194	0.055	19.15		kg	
Plants			214.600		kg	
Sodium Carbonate		0.090			kg	
Water		10.000			kg	
Total Contaminated						
Water	10.00	kg				
Total Chemical						
Emissions		Ira				
	242.19	Kg				
	242.19	кд				
	242.19	кg				
	242.19	kg				
	242.19					
	242.19					

PROCESS DIAGRAM INTERPRETATION SHEET

- 1) As much as possible, standard symbols are used for all unit processes.
- 2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet
- 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
- 4) The process numbering is as follows,
 - generally numbers progress from the start to the end of the process
 - numbers are used for process streams
 - C i , i = 1,...n are used for all cooling non-contact streams
 - S j, j = 1,...n are used for all steam heating non-contact streams
- 5) Recycle streams are shown with dotted lines
- 6) For most streams, the temperature and pressure are shown, or indicated in general with a note at the end of the page.

Notes: 1) Unless otherwise noted, all the units are operated at room temperature 2) Unless otherwise noted, all the units are operated at atmospheric pressur

Ephedrine, Page 5

Mass Balance Sheet

Product: Ephedrine [299-42-3]

	tate of Chemic		· ,		Gas	Liquid	Solid	
Negative amounts indicate that the stream is an output Ephedra Sodium								
Stream #	Total Flow	plants	Methanol	Ephedrine	Carbonate	Water	Ether	Ethanol
	kg	kg	kg	kg	kg	kg	kg	kg
1	215,700	215,700	0	0	0	0	0	0
2	215,700	215,700	0	0	0	0	0	0
3	10,452,700	215,700	10,237,000	0	0	0	0	0
4	194,000	0	194,000	0	0	0	0	0
5	10,238,100	0	10,237,055	1,045	0	0	0	0
5a	-306600	-214,600	-92,000	0	0	0	0	0
6	10,043,000	0	10,043,000	0	0	0	0	0
7	10,237,000	0	10,237,000	0	0	0	0	0
8	1,100	0	55	1,045	0	0	0	0
9	10,100	0	0	0	100	10,000	0	0
10	11,200	0	55	1,045	100	10,000	0	0
11	37,000	0	0	0	0	0	37,000	0
12	1,811,000	0	0	990	10	0	1,810,000	0
12a	-10200	0	-55	-55	-90	-10,000	0	0
13	1,810,000	0	0	0	0	0	1,810,000	0
14	1,000	0	0	990	10	0	0	0
15	3,990	0	0	0	0	0	0	3,990
16	4,990	0	0	990	10	0	0	3,990
17	-3950	0	0	0	0	0	0	-3,950
18	1,000	0	0	990	10	0	0	0
19	-1,000	0	0	-990	-10	0	0	0
Fugitive Em	-139040	0	-102,000	0	0	0	-37,000	-40

Energy

A) Heating Requirements

<u>Unit Process</u>	kJ/kg Product	Comments
Reboiler for Column 1	31,767,058.82	
Reboiler for Column 2	1,785,882.35	
Heater	298.82	
TOTAL	33,552,941.18	

B) Cooling Requirements

<u>Unit Process</u>	kJ/kg Product	Comments
Crystalizer	-298.82	2 Refrigeration
Condenser for Column 1	-31,767,058.82	2
Condenser for Column 2	-1,785,882.35	5
TOTAL	-33,553,240.00)

C) Electricity Unit Process	kJ/kg Product <u>Comments</u>
Agitators	27,868
Filters	10,780
Mill	1,149
Pumping	71 Estimated with 0.003 kJ/kg pumped
Total	39,868

* For cooling and heating requirements, an 85% of heat transfer efficiency is assumed and included in these calculations.

** For distillation, a reflux ratio of 1.3 was assumed

Substance	MW	Cp (J/mol-K)	AHf (kJ/mol)	AHv (kJ/mol)	Tb (C)
					39 (f)
Ephedrine	165.23	345*			200(v)
Ethanol	46.07	112.68 (1)	-277 (1)	46.42	78.5
Ether	74.12	179.1	-271.2 (1)	27.37	34.6
Methanol	32.04	81.32	-238.9 (1)	37.4	64.7
Sodium Carbonate	105.99	111	-1130.77		
Water	18	75.37	-285 (1)	43.99	100

Physical Properties Table

NOTES

* Calculated

(sub) Sublimation

(f) Fusion

(v) Vaporization

Ephedrine, Page 9