Glyphosate from PMIDA [1071-83-6]

CONTENTS OF FACTORY GATE TO FACTORY GATE

LIFE CYCLE INVENTORY SUMMARY

Chemistry	2
Process Summary	3
Summary of LCI Information	1
Process Diagram Interpretation Sheet	3
Process Diagram or Boundary of LCI)
Mass Balance of Chemicals in Each Process Stream	L
Graph of Cumulative Chemical Losses through Manufacturing Process15	5
Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process16	5
Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process17	7
Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms),	,
and Assumed Heat Recovery from Hot Streams Receiving Cooling18	3
Graph of Cumulative Energy Requirements)
Conversion of Chemical Losses and Energy Requirements into Environmental Parameters, Prior to any	
Treatment or Discharge to the Environment Error! Bookmark not defined	•
Waste Management Summary Error! Bookmark not defined	•
Calculation Summary Error! Bookmark not defined	•

Authors	E. Griffing and
Peer reviews, name (date)	
Gtg report last modified on	5-29-2011
Additional notes	This gtg has not been marked as final.

Checked for database consistency on	5-29-2011
First gtg version finalized on	5-29-2011
Modification history, Author (date)	(5-4-2011), (5-29-2011), and (5-29-2011)

Products	glyphosate
Standard inputs	Oxygen, PMIDA

Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard methods of engineering process design, and technical reviews. These reports are intended to be representative of industrial production based on the stated route.

Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration of these data with lci data based on other methodologies is the responsibility of the user. Each report may be updated to improve model accuracy or representativeness.

Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999 - present.

Chemistry

2

Process Summary

Literature

Glyphosate is the active ingredient in a broad-spectrum herbicide often marketed as round-up. Popular formulations in commercial herbicides are as glyphosate salts. The most popular salt is isopropylammonium (Green, S. and Pohanish, R.P., 2007). Other salts are monoammonium, diammonium, and potassium (BCPC, 2010). These salts provide the primary function of increasing the solubility in water. The solubility of glyphosate is increased from 2 wt% in water to about 44 wt% in water when in the salt form. Typical commercial formulations are 2 to 30 wt% (US 7,049,270, 2006).

As of 2000, Monsanto was the largest producer of glyphosate. Production by competition was about 40,000 tonnes/yr (Woodburn, 2000). As of 2009, China had a capacity of 655,000 tonnes glyphosate /yr, and China produced about 70% of the world supply of technical grade glyphosate. Most of China's production is shipped to other countries to be formulated and marketed as an herbicide (R & M, 2011). Although some efficiency improvements may be achieved by producing the salt directly, we show production of the glyphosate acid and crystallizing as a product. The salts can then be formed from the solid glyphosate in a separate life cycle inventory gate-to-gate.

Glyphosate is produced by four routes (1) original Monsanto (2) new Monsanto, (3) Chinese chloracetic acid route, (4) Syngenta route (Bryant, 2003). The Monsanto routes and the Chinese chloracetic acid route all go through the intermediate iminodiacetic acid (IDA) and phosphonomethyl iminodiacetic acid (PMIDA). The differences are in production of the intermediate IDA. In world production, the primary starting point for IDA is diethyl amine (DEA). However, in China, 80% of the IDA capacity is currently from glycine (Yin, 2011). In this gtg, glyphosate acid is produced from PMIDA. In our gtg library, the disodium salt of IDA is produced from DEA.

In Monsanto's process, IDA is converted to PMIDA. PMIDA is converted to the isopropylamine salt (DSIDA). The overall yield of these steps is 85% (Woodburn, 2000). The conversion of IDA to PMIDA is 93% (see separate gtg report for PMIDA), and the conversion of PMIDA to glyphosate is 93%. The formation of the salt is assumed to be 100% efficient. US 7,049,270 gives a procedure for making the potassium salt, and there are no separation losses. Thus the overall yield in the set of gtgs is 85%. The overall yield from ethylene oxide (used to produce diethanolamine for IDA production) is 50% or lower (US 7,750,180). The reason for the low yield from ethylene oxide (<50%) is that the oxidative cleaving of the intermediate PMIDA, during which, one of the two acetic acid groups is cleaved, and is not recoverable (US 7,750,180).

PMIDA is fed to a reactor in an aqueous phase, and an oxygen source such as air or gaseous oxygen is sparged through the reactor. US 7,799,571 describes a series of three reactors. Oxygen is sparged through the reactors at different rates to achieve higher conversion of PMIDA. Total conversion is about 97 to 99.5%. In this gtg, we show a single reactor, and assume a conversion of 99%. After the reaction, catalyst (typically noble metal on carbon) is filtered then recycled, and the solution is sent to an evaporative crystallizer. In this gtg, we follow a crystallization scheme presented in US 7,799,571. After filtration, a portion of the reactor effluent is sent to an adiabatic vacuum crystallizer, and the remainder is sent to a thermal evaporative crystallizer. In this gtg, we assume that half is sent to each evaporator. The effluent is separated from the crystals by a centrifuge. Ten percent of the effluent is purged to prevent buildup of PMIDA, and the remainder is sent back to the crystallizer to recover glyphosate. Thus, substantially all of the water is evaporated in the crystallizer. The crystals from the centrifuge are dried and are considered technical grade. The size of the purge represents a trade-off between PMIDA content in product and recovery of glyphosate.

If the reaction time is long and / or the conditions are highly oxidizing, the PMIDA will be converted at a higher percentage of input. However, the product over-oxidizes glyphosate to aminomethylphosphonic acid (AMPA). Additionally, the glyphosate and AMPA can be methylated with the formaldehyde byproduct. Thus, there is a yield tradeoff between low conversion and high side product formation. Under commercial conditions, the rate constant for reaction of glyphosate with oxygen to that of PMIDA with oxygen is less than 0.017 (US 6,921,834). In the final reactor, about 7% of the PMIDA is converted. However, the ratio of glyphosate to PMIDA during this reactor is about 95 to 5. Thus, the conversion of glyphosate to AMPA is about 95/5*.017 = 0.32 * 7% = 2.2%. The overall conversion of glyphosate to

AMPA is assumed to be 2.5%. The overall yield is assumed to be 93%, and the losses to unreacted PMIDA and over-oxidized glyphosate are 1% and 2.5%, respectively. Thus, additional losses in the separation system are 3.5%.

	Reactor T	Reactor P, atm	Water, kg / kg PMIDA	O2, kg / kg PMIDA	Catalyst, kg/kg PMIDA	Reaction time	Notes
US 6,921,834	75	7	10 to 49		0.15		6
US 7,799,571	90	4	12 to 37	0.08-0.11 (0.55- 0.83)	0.13 to 0.375		1,2,3,7
US 5,962,729	Preheated to 70 oC	4	190	2.8 (20 mol/mol)		Order of 20 minutes	
US 3,969,398	75 – 90 oC 90 in example	1 to 7 3.1 in example	25	1.4 (10 mol/mol)	0.05 to 0.2	3 hrs.	4
Used in this gtg	90	3.5	36	0.14 (1 mol/mol)	0.15	2 hrs	5

Table 1. Process parameters

1. Exothermic with cooling

- 2. O2 source can be air, oxygen enriched air or pure oxygen
- 3. Per pass conversion in a series of reactors is 97 to 99.5%
- 4. Industrial separations not discussed. Water and byproducts were evaporated from product at vacuum.
- 5. The solubility of glyphosate is 2 wt% in water (Monig et al.). The water flow into the reactor is set so that the output is saturated with glyphosate.
- 6. Concentration of PMIDA specified as between 2 and 10wt% into oxidation reactor.
- 7. This corresponds to 60 to 90% utilization of O2 in primary reaction.

The oxidation reaction is exothermic and heat is removed by heat exchangers. The heat of reaction is estimated by a proxy reaction of glycine oxidation.

 $C2H5NO2 + \frac{1}{2}O2 \rightarrow NH3 + CO2 + H_2CO$

Glycine + oxygen \rightarrow ammonia + carbon dioxide + formaldehyde

The effect of the -CH2COOH and -CH2HPO3 groups is neglected. The heat of reaction is -69.2-393.5-115.9- (-527 + 0) = -51.6 kJ/gmol. The heat of reaction for over-oxidation of glyphosate to AMPA is also 51.6 kJ/gmol.

The solubility of PMIDA (2 % at 75C and 6 % at 105C [6921834 p. 12 line 25]; 1 % at 25C, 4 % at 95C, 10 % at 150C [3,969,398 p. 2 line 36] is close to that of glyphosate (on mass basis) (1.01% at 20C, [Wikipedia]; 1.9 wt% Monig et al.). The ratio of PMIDA to glyphosate in the recycle is at least 1.5 and typically 5 to 8 times the ratio of PMIDA to glyphosate after the reaction (US 7,799,571, 2010). The purge (up to 10%) prevents buildup of PMIDA. In this gtg, the purge is 10% and the PMIDA concentration relative to glyphosate is 5 times the ratio after the reactor.

LCI design

PMIDA is fed as a 2.7 wt% aqueous solution. It is combined with an aqueous recycle stream, heated to 90 oC and fed to a reactor. Oxygen (100% stoichiometric excess) is bubbled through a continuous stirred tank reactor. The residence time is 2 hours, and mechanical mixing is used. The reactor effluent is filtered to recover catalyst. The liquid phase is split equally between two evaporators. The first evaporator utilizes vacuum to evaporate water adiabatically. The amount of water evaporated is calculated based on the temperature drop (90 oC to 35 oC), and is about 10%. The liquid passes through a filter to recover glyphosate, and the filtrate is recycled to the reactor. The remainder of the filtered reactor effluent is sent to a steam evaporator, where the majority of water is removed from the process. The concentrated stream exiting the evaporator is combined with glyphosate from the vacuum evaporator and solid glyphosate is recovered in a centrifuge. The liquid is returned to the thermal evaporator after a 10% purge to prevent buildup of PMIDA. The crystals from the centrifuge are dried and cooled to standard temperature.

Notes:

There is a large water flow into the reactor. Sending water through the vacuum evaporator saves energy by reducing the fresh water input. However, it is not clear how much of the filtered reactor effluent goes through this loop. The energy required for the thermal evaporation is 50 MJ/kg. If we put more through that evaporator, it could nearly double. However, expensive multi-effect evaporators could be used to reduce this (not sure if this would be used at this production volume).

From Green (via other source), the cradle-to-gate of glyphosate requires 454 MJ/kg), more than twice that of atrazine (190 MJ/kg)

References

BCPC (2010) *The Pesticide Manual*, 14th edition, see <u>www.pesticidemanual.com</u> for details. Bryant, R.B. (2003) "Matching technical and market intelligence needs with resources," *Specialty Chemicals Magazine*, accessed online: <u>http://www.agranova.co.uk/pdf/RJB_ChemSpec2003.pdf</u>. Green, S, and Pohanish, R.P. (2005) *Sittig's Handbook of Pesticides and Agricultural Chemicals*, William Andrew Publishing. Monig, E. Zwidinger, R.A., Warner, M., Batten, R., Liverman, D., (date not found) Treatment technology

Monig, E. Zwidinger, R.A., Warner, M., Batten, R., Liverman, D., (date not found) Treatment technology for pesticide manufacturing effluenets: Glyphosate, Research Triangle Institute, Contract 68-02-3688. R & M (2001) Research and Markets report accessed online

http://www.researchandmarkets.com/reportinfo.asp?report_id=1082203&t=d&cat_id=

Ullmann's (year). *Ullmann's Encyclopedia of Industrial Chemistry*, ArticleName (Authors, article authors) US 7,049,270 (2006) "Potassium Glypohsate Formulations," Awarded to Monsanto Technology LLC. Woodburn, A.T. (2000) "Glyphosate: production, pricing and use worldwide," *Pest Management Science* **56**, pp 309-312.

Yin, G. (2011). Glyphosate: There Is No Substitute, url:

http://www.farmchemicalsinternational.com/cropprotection/productfocus/?storyid=2997

Critical parameters
Conversion / Yield information from both reactors

		Conversion of or Vield from PMIDA	Conversion of or Vield from Oxygen
		Tield Holli TivilDA	Tield Holli Oxygeli
Total conversion in reactor 1:	From mass	99	60
(% of reactant entering the process that	balance		
reacts)			
Total per pass conversion in reactor 1:	From mass	98	60
(% of reactant entering the reactor that	balance		
reacts)			
Total yield of reactor 1:	From mass	99	81
(% yield ProductChem produced in the	balance		
reactor based on reactant input to			
process)			
Total yield of Process:	From mass	93	47
(% yield produced by the overall	balance		
process based on reactant input to			
process)			
Notes:			

Product purity		
	Glyphosate	Comments
Used here	98.7	

Summary of LCI Information

Standard inputs					
UID	Name	Flow	Purity	Units	Comments
7782-44-7	Oxygen	199	-	[kg/hr]	
5994-61-6	PMIDA	1422	-	[kg/hr]	
	Total	1621		[kg/hr]	
Non-reacting inputs					
UID	Name	Flow	Purity	Units	Comments
7732-18-5	Water	2.84E+04	-	[kg/hr]	
	Total	2.84E+04		[kg/hr]	
Ancillary inputs					
UID	Name	Flow	Purity	Units	Comments
	Total	0		[kg/hr]	
Products					
UID	Name	Flow	Purity	Units	Comments
1071-83-6	glyphosate	1001	98.6	[kg/hr]	
	Total	1001		[kg/hr]	
Benign outflows					
UID	Name	Flow	Purity	Units	Comments
7732-18-5	Water	2.84E+04	-	[kg/hr]	
7782-44-7	Oxygen	79.0	-	[kg/hr]	
	Total	2.84E+04		[kg/hr]	

Process emissions										
UID	Name	Gas	Liquid	Solid	Solvent	Units	Comments			
1071-83-6	glyphosate	0	50.8	0	0	[kg/hr]				
124-38-9	Carbon dioxide	277	0	0	0	[kg/hr]				
64-18-6	Formic acid	1.13	57.2	0	0	[kg/hr]				
50-00-0	Formaldehyde	1.49	150	0	0	[kg/hr]				
1066-51-9	aminomethylphosphonic acid	0	2.50	0	0	[kg/hr]				
5994-61-6	PMIDA	0	4.81	0	0	[kg/hr]				
	Total	280	266	0	0					

Mass balance	
Total inputs	3.00E+04
Total outflows	3.00E+04
Net input	-5.34

Energy use			
Energy type	Amount	Units	Comments
electricity	500	[MJ/hr]	Net electricity use at plant
heating steam	7.72E+04	[MJ/hr]	heating by steam (0.85
			efficiency included)
Net input requirement	7.77E+04	[MJ/hr]	Net of energies input to system
cooling water	- 6.53E+04	[MJ/hr]	net cooling by cooling water
potential recovery	- 1.48E+04	[MJ/hr]	potential energy recovery
			(negative)
Net energy	6.29E+04	[MJ/hr]	Net input requirement -
			potential recovery

Process Diagram Interpretation Sheet

- 1) As much as possible, standard symbols are used for all unit processes.
- 2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet

8

- 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
- 4) The process numbering is as follows,
 - generally numbers progress from the start to the end of the process
 - numbers are used for process streams
 - C i , i = 1,..n are used for all cooling non-contact streams
 - S j, j = 1,...n are used for all steam heating non-contact streams
- 5) Recycle streams are shown with dotted lines

For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm

Process Diagram or Boundary of LCI

Steam enters the process as a gas at 207 °C and leaves as a liquid at 207 °C. Cooling water enters at 20 °C and leaves at 50 °C.

9

Mass Balance of Chemicals in Each Process Stream

All flow rates are given in kg / hr.

Physical state of chemical losses: Gas, Liquid, Solid.

	Comments	Streams	Temp [C]	٩	Phase	Total Flow	Water	PMIDA	Oxygen	aminomethylpho sphonic acid	Formaldehyde	Formic acid	Carbon dioxide	glyphosate	platinum on carbon 10%
Input		1	25.0	1.00	Ι	2.98E+04	2.84E+04	1422							
		Stream 15:Recycle input				2.35E+04	2.28E+04	13.7	0	6.60	146	55.7		462	
		Stream 15:Re calculated	ecycle			2.35E+04	2.28E+04	13.8	0	6.66	147	55.7	0	462	0
		Stream 15:Recycle residue				-0.274	0.194	- 0.101	0	- 0.0576	-0.292	0.0275	0	- 0.0448	0
		2	29.4	1.00	Ι	5.33E+04	5.12E+04	1435	0	6.60	146	55.7	0	462	0
		3	29.4	1.00	Ι	5.33E+04	5.12E+04	1435	0	6.60	146	55.7	0	462	0
		4	90.0	1.00	Ι	5.33E+04	5.12E+04	1435	0	6.60	146	55.7	0	462	0
Input	•	5	25.0	1.00	g	199			199						
		6	150	3.50	g	199			199						
		Stream 11:Recycle input				428	213								215
		Stream 11:Re calculated	ecycle			429	213	0	0	0	0	0	0	0	215
		Stream 11:Recycle residue				-0.321	-0.321	0	0	0	0	0	0	0	0
R1	1408	kg		PMIDA		is converted reactor inpu	∣ in rxn (98.′ t)	1 % of							
	37.2	kg	Forma	aldehyde	:	is converted in rxn (25.4 % of reactor input)									
	10.5	kg	gly	phosate	:	is converted in rxn (2.27 % of reactor input)									
		Input to react	or		:	5.39E+04	5.14E+04	1435	199	6.60	146	55.7	0	462	215

	Comments	Streams	Temp [C]	٩	Phase	Total Flow	Water	PMIDA	Oxygen	aminomethylpho sphonic acid	Formaldehyde	Formic acid	Carbon dioxide	glyphosate	platinum on carbon 10%
		R1 Reaction	Coefficie	ent 1	:			-1.00	-0.500		1.00		1.00	1.00	
		R1 Conversio	n 1 [kg/	hr]	:	0		-	-99.2		186		273	1048	
								1408							
		R1 Conversion 1 [kgmol/hr]		:	6.20		-6.20	-3.10		6.20		6.20	6.20		
		R1 Reaction Coefficient 2			:				-0.500		-1.00	1.00			
		R1 Conversion 2 [kg/hr]			:				-19.8		-37.2	57.0			
		R1 Conversion 2 [kgmol/hr]			:	1.24			-0.620		-1.24	1.24			
		R1 Reaction Coefficient 3			:				-0.500	1.00	1.00		1.00	-1.00	
		R1 Conversion 3 [kg/hr] R1 Conversion 3 [kgmol/hr]			:	0			-0.992	6.88	1.86		2.73	-10.5	
					:				-	0.0620	0.0620		0.0620	-	
		Elow out of reactor						07.0	0.0310	10 E	207	110	076	0.0620	045
		Primary product			5.39E+04	5.14E+04	27.9	79.0	13.5	297	113	270	1500	215	
				:	giyphosate	0	00.0	60.2	NIA	NIA	NIA	NIA	NIA	0	
				•		0	99.0	60.3						0	
		Tetel viold fro		or	•		0	90.1	00.3	INA		NA			0
\M/ooto				2 50		255		99.0	70.0		INA		NA 276	INA	
vasie	[7	90.0	3.50	<u> </u>	-300 5 36E±04		27.0	-79.0	12.5	207	112	-270	1500	215
		0	90.0	1.00	۱ د	J.J0L104 /27	0.14L104 213	21.5	0	15.5	291	115	0	1300	213
Input		9 10	25.0	1.00	5	2.00	215								213
input		10	20.0	1.00	з с	2.00 /20	213	0	0	0	0	0	0	0	2.00
		12	90.0	1.00	1	5 31E+04	5 12E+04	27.9	0	13.5	297	113	0	1500	2 00
	0 500	12	90.0	1.00		2.66E+04	2 56E+04	13.9	0	6 74	149	56.4	0	750	1.00
Waste	0.000	13a	35.0	0.100	a	-2475	-2475	10.0	Ű	0.7 1	110	00.1	Ű	100	1.00
		13b	35.0	1.00	9	2475	2475								
		14	25.0	1.00	İ	2.41E+04	2.31E+04	13.9	0	6.74	149	56.4	0	750	1.00
		15	35.0	1.00		2.35E+04	2.28E+04	13.8	0	6.66	147	55.7	0	462	0
Display	in	16	25.0	1.00	s	579	288	0.173	0	0.0839	1.85	0.701	0	288	1.00
PFD															
Display PFD	in	17	90.0	1.00	I	2.66E+04	2.56E+04	13.9	0	6.74	149	56.4	0	750	1.00
		Stream 23b:Recycle input				2.61E+04	2.56E+04	42.0	0	22.2	1.00	1.00	0	455	0

	Comments	Streams	Temp [C]	٩	Phase	Total Flow	Water	PMIDA	Oxygen	aminomethylpho sphonic acid	Formaldehyde	Formic acid	Carbon dioxide	glyphosate	platinum on carbon 10%
	1001	Stream 23b:Recycle calculated				2.61E+04	2.56E+04	43.3	0	22.5	0.900	0.900	0	455	0
		Stream 23b:Recycle residue				-0.0901	1.29	-1.31	0	-0.323	0.100	0.1000	0	0.0500	0
		18	95.0	1.00	Ι	5.27E+04	5.12E+04	55.9	0	28.9	150	57.4	0	1205	1.00
		19	100	1.00	g	2.30E+04	2.28E+04				150	57.1	0		
Waste		20	25.0	1.00		-2.30E+04	- 2.28E+04	0	0	0	-150	-57.1	0	0	0
		21	100	1.00	Ι	2.96E+04	2.83E+04	55.9	0	28.9	-0.848	0.299	0	1205	1.00
		22	99.0	1.00	Ι	3.02E+04	2.86E+04	56.1	0	29.0	1.000	1.00	0	1492	2.00
		23	100	1.00	Ι	2.90E+04	2.84E+04	48.1	0	25.0	1.000	1.00	0	506	0
Waste	0.100	23a	100	1.00	I	-2902	-2843	-4.81	0	-2.50	- 0.1000	-0.100	0	-50.6	0
		23b	100	1.00	Ι	2.61E+04	2.56E+04	43.3	0	22.5	0.900	0.900	0	455	0
		24	100	1.00	S	1198	197	8.00		4.00				987	2.00
		25	100	1.00	g	198	197	0	0	0	0	0	0	0.220	0
Waste	r	26	25.0	1.00	1	-198	-197							-0.220	
		27	100	1.00	S	1001	0	8.00	0	4.00	0	0	0	987	2.00
Main pr	oduct	28	25.0	1.00	s	-1001	0	-8.00	0	-4.00	0	0	0	-987	- 2.00
		Product purity	′ (%)		:	98.6									
		Main product			:	glyphosate									
		Overall Rxn c	oefficier	nts	:			-1.00	-0.500		1.00		1.00	1.00	
		Total yield of reactant)	process	(from	:			93.2	46.9		NA		NA	NA	
Waste		Fugitive Losse	es (Tota	al)	g	-3.99	0	0	0	0	-1.49	-1.13	-1.38	0	0
		Input Sum			:	3.00E+04	2.84E+04	1422	199	0	0	0	0	0	2.00
		Fugitive Repla Reactants	acemen	t of	:	0		0	0						
		Total Input (In Replacement)	iput + Fi)	ugitive	:	3.00E+04	2.84E+04	1422	199	0	0	0	0	0	2.00
		Product Sum			:	1001	0	8.00	0	4.00	0	0	0	987	2.00
		Main product	flow		:	1001	0	8.00	0	4.00	0	0	0	987	2.00

Comments	Streams	Temp [C]	۵	Phase	Total Flow		Water	PMIDA	Oxygen	aminomethylpho sphonic acid	Formaldehyde	Formic acid	Carbon dioxide	glyphosate	platinum on carbon 10%
	Net Input (in - out, omitting fugitives)			:		0.905									

Туре	Label	Temp, C	P, atm	Phase	Total flow	Steam	Water
Input	C1	20.0	1.00	1	5615		5615
Cooling out	C2	50.0	1.00	1	-5615		-5615
Input	C3	20.0	1.00	1	4.04E+04		4.04E+04
Cooling out	C4	50.0	1.00	1	-4.04E+04		-4.04E+04
Input	C5	20.0	1.00	1	4.88E+04		4.88E+04
Cooling out	C6	50.0	1.00	1	-4.88E+04		-4.88E+04
Input	C7	20.0	1.00	1	406		406
Cooling out	C8	50.0	1.00	1	-406		-406
Input	S1	207	1.00	1	8100	8100	
Steam out	S2	207	1.00	1	-8100	-8100	
Input	S3	207	1.00	1	3.20E+04	3.20E+04	
Steam out	S4	207	1.00	1	-3.20E+04	-3.20E+04	
Input	S5	207	1.00		261	261	
Steam out	S6	207	1.00	I	-261	-261	

Graph of Cumulative Chemical Losses through Manufacturing Process

Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process

updated on 5/29/2011 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process

updated on 5/29/2011 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling

Ener	gy Input [l	MJ / hr]		Cooling Requirements [MJ / hr]									
Process Diagram Label	Unit	Energy input [MJ / 1000 kg Product]	Cumulative energy [MJ / 1000 kg Product]	To [C] (Used to determine energy type)	Energy Type	Process diagram label	Unit	Energy Loss	Cumulative cooling water energy	Tef [C] (for recovery efficiency)	Recovery Efficiency	Energy Recovered	Cumulative recovered [MJ / 1000 kg Product]
P1	Pump 1	3.76	3.76		Е	R1	Reactor 1	-824	-824	90.0	0.250	-206	-206
Hx1	Heat exchanger 1	1.32E+04	1.32E+04	90.0	S	Hx2	Heat exchanger 2	-5969	-6793	35.0	0	0	-206
Cmp1	Compressor 1	30.8	1.32E+04		Е	Hx3	Heat exchanger 3	- 5.80E+04	- 6.48E+04	100	0.250	- 1.45E+04	- 1.47E+04
MxE1	Mixer electricity 1	236	1.34E+04		E	Hx4	Heat exchanger 4	-501	- 6.53E+04	100	0.250	-125	- 1.48E+04
Vac1	Vacuum electricity 1	27.2	1.35E+04		E								
Evp2	Evaporator 2	5.20E+04	6.55E+04	100	S								
Cnt1	Centrifuge 1	202	6.57E+04		Е								
Dry1	Dryer 1	439	6.61E+04	100	S								
	Potential recovery	- 1.48E+04	5.13E+04										
	Net energy		5.13E+04				Potential recovery:						- 1.48E+04
	Electricity	500	E	[MJ/hr]									
	DowTherm	0	D	[MJ/hr]									
	Heating steam	6.56E+04	S	[MJ/hr]		Evap 1, adiabatic:	Evap 1 is adiat	patic, and en	ergy should	be			
	Direct fuel use	0	F	[MJ/hr]									
	Heating natural gas	0	G	[MJ/hr]									
	Diesel process	0	Ds	[MJ/hr]									
	Undefined	0	U	[MJ/hr]									
	Heating coal	0	С	[MJ/hr]									

updated on 5/29/2011 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Energy	6.61E+04	[MJ/hr]				
input						
requirement						
Cooling	-	[MJ/hr]				
water	6.53E+04					
Cooling		[MJ/hr]				
refrigeration						
Potential	-	[MJ/hr]				
heat	1.48E+04					
recovery						
Net energy	5.13E+04	[MJ/hr]				

