Pd on carbon (activated carbon impregnated with Pd)

CONTENTS OF FACTORY GATE TO FACTORY GATE LIFE CYCLE INVENTORY SUMMARY

Chemistry	1
Process Summary	1
Summary of LCI Information	5
Process Diagram Interpretation Sheet	7
Process Diagram or Boundary of LCI	8
Mass Balance of Chemicals in Each Process Stream	12
Graph of Cumulative Chemical Losses through Manufacturing Process	19
Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process	20
Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process	21
Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exother	ms),
and Assumed Heat Recovery from Hot Streams Receiving Cooling	22
Graph of Cumulative Energy Requirements	24
Conversion of Chemical Losses and Energy Requirements into Environmental Parameters, Prior to any	
Treatment or Discharge to the Environment	25
Waste Management Summary	26
Calculation Summary	27

Chemistry

Adsorption rea	actions:	
	$PdCl_2 + 2NaCl \rightarrow Na_2PdCl_4 $ (1)	
	$Na_2PdCl_4+H_2O_2 \rightarrow Na_2PdCl_4(OH)_2 \tag{2}$	
	$Na_2PdCl_4(OH)_2 + 2NaOH + C \rightarrow C - Pd(OH)_4 + 4NaCl$ (3)	
Net reaction	$PdCl_2+H_2O_2+2NaOH+C \rightarrow C-Pd(OH)_4+2NaCl $ (4)	
	palladium + hydrogen + sodium +activated → adsorbed catalyst+sodium	
	chloride peroxide hydroxide carbon hydroxide chloride	
Reduction reac	ctions:	
	$C-Pd(OH)_4 + 4e^{-} \rightarrow C-Pd+4OH^{-} $ (5)	
	$CH_2O + H_2O \rightarrow CO_2 + 4H^+ + 4e^-$ (6)	
Net:	$C-Pd(OH)_4+CH_2O \rightarrow C-Pd + CO_2+3H_2O \tag{7}$	
adsorbed	d palladium hydroxide+ formaldehyde → adsorbed palladium + carbon dioxide + wa	ıter
Notes:		
The rxn chemis inferred.	stry varies in the literature. This represents one option. The reduction reaction (7) is	3

Process Summary

Literature

Several supports are commonly used for PGMs. When carbon is used as a support, it is in one of three forms, activated carbon, carbon black, or graphite. The type of support typically depends on the desired pore structure for a given application. In the preparation stage, the process is similar regardless of the support type. Therefore, any one of the three supports could be substituted in this GTG LCI report.

Palladium can either be deposited on the surface of a carbon sphere (called egg-shell morphology) or impregnated within the carbon. Again, the method depends on the final application. The eggshell catalysts do not last as long due to the limited surface area, but provide better reaction rates for diffusion-limited processes. Eggshell catalysts are manufactured by applying colloidal metal to the carbon. Impregnated catalysts are formed by contacting a suspension of activated carbon (in water) with an ionic palladium species such as $[Pd(OH)_4]^{2-}$ (Auer, 1998).

When $PdCl_2$ is added directly to most carbon supports, the palladium is immediately deposited as a shiny film. Catalysts formed in this way generally have a low activity (U.S. 3,138,560). Therefore, various pretreatments of $PdCl_2$ and the catalyst have been studied in order to increase catalyst activity. Several patents (US 6,963,016; US 4,415,479; US 6,624,109; US 5,753,583) discuss methods producing catalysts with high activity for specific reactions. A more generic process is discussed in U.S. 2,857,337 and U.S. 3,138,560. In these patents, the $PdCl_2$ is pre-treated with either H_2O_2 or $NaHCO_3$ and either NaCl or HCl. In these cases, the Pd is thought to be deposited as $Pd(OH)_2$ (US 2,857,337) or $Pd(OH)_4$ (US 3,138,560), which is consistent with Auer (1998) and Stiles (1983). In this GTG LCI report, we use NaCl and H_2O_2 , as described in the chemistry section.

A solution of palladium chloride in water is prepared. The mass percentage of Pd is given as 1% (Stiles, 1983), 0.25% (US 3,138,560), and 2% (US 2,857,337). A 1% solution is used in this GTG report. NaCl and H_2O_2 are added. We use a 5% stoichiometric excess of NaCl (US 3,138,560 starts with Na_2PdCl_4). A 50% excess of H_2O_2 is used as given by U.S. 3,138,560.

A slurry of activated carbon solids in water is prepared separately. Stiles (1983) writes that 1 to 5% carbon is used. US 2,857,337 gives a 10% carbon solution. The activated carbon is generally pre-treated with an alkali hydroxide wash if metal content will be higher than 5% or the carbon is particularly basic. We used a 5%NaOH solution to pretreat a 3 wt% carbon solution, followed by rinsing and drying of the carbon.

Stiles (1983) teaches that both the carbon and metal solutions are heated to 50°C and combined. In US 2,857,337, the streams are combined, and then the solution is heated to 90-95°C for impregnation. US 3,138,560 makes no mention of temperature. We combine the streams and heat to 70°C in this GTG LCI. Sodium hydroxide is added prior to heating 1.1 times the stoichiometric requirement for reaction (3).

Once the activated carbon is loaded with palladium (as $Pd(OH)_4$), various process descriptions diverge. In US 3,138,560, the catalyst is simply washed and dried. No mention is made of reducing the palladium in the examples. Both Stiles (1983) and US 2,857,337 discuss reduction with either formaldehyde or hydrogen. In US 2,857,337, the reduction is performed by adding a formaldehyde solution to the hot catalyst solution. Stiles (1983) recommends first washing the catalyst with demineralized water prior to reduction with formaldehyde (10X stoichiometric quantity). In this GTG LCI, we include a wash, followed by a reduction with formaldehyde, another series of washes, and finally the catalyst is dried. Catalyst drying is at $80-200^{\circ}$ C (Stiles, 1983). The initial drying, prior to reduction is at 120 oC, and the final product is dried at 100° C.

LCI design

Palladium dichloride, sodium chloride, water and hydrogen peroxide are mixed. Activated carbon is pre-treated by rinsing with NaOH in water (5%). In the wash, 0.33 kg of HCl was present for every 1 kg of carbon. A recycle was used, so that 0.11 kg HCl was consumed per kg of activated carbon. After pre-treatment, the carbon was dried, and water was added to make a 3.1% activated carbon slurry.

The pretreated carbon is filtered, rinsed, and dried at 120 °C. Water and sodium hydroxide are added and the carbon and palladium streams are combined in an adsorption reactor. Palladium adsorbs as Pd(OH)₄ at 70 °C. The palladium loaded carbon is then filtered (the liquid is discarded) and rinsed. Formaldehyde is added at 10 times the stoichiometric requirement to reduce the Pd(OH)₄ to Pd. Carbon dioxide and water vapor leave the reactor, and are cooled and treated as waste. The reduced catalyst is filtered (liquid is discarded), rinsed, and dried at 100°C.

Comments on design assumptions

The mass efficiency of this report is high (99% of yield based on Pd). The energy is dominated by Reactor 1 and the Dryers. The largest energy contribution (reactor) is determined by the percent carbon and temperature in the adsorption reactor. These are between 1 and 5% (in the literature) and between 50 and 90°C. We used 3% and 70°C.

The reaction chemistry varies widely in the literature.

Critical parameters

Conversion / Yield i	nformation	from both reactors			
		Conversion of or Yield from palladium chloride	Conversion of or Yield from sodium hydroxide	Conversion of or Yield from hydrogen peroxide	Conversion of or Yield from Formaldehyde
Total conversion	From	99	33.6	94.3	
in reactor 1:	mass				
(% of reactant	balance				
entering the					
process that reacts)	_		10.0		
Total per pass	From	99	60.8	94.3	
conversion in	mass				
reactor 1:	balance				
(% of reactant					
entering the					
reactor that reacts)					
Total yield of	From	99	60.8	94.3	
reactor 1:	mass				
(% yield Pd(OH) ₄	balance				
produced in the					
reactor based on					
reactant input to					
process)					
Total conversion	From				10
in reactor 2:	mass				
(% of reactant	balance				
entering the					
process that reacts)					
Total per pass	From				10
conversion in	mass				
reactor 2:	balance				
(% of reactant					
entering the					
reactor that reacts)					
Total yield of	From				10
reactor 2:	mass				

(% yield produced	balance				
in the reactor					
based on reactant					
input to process)					
Total yield of	From	99	34	94	10
Process:	mass				
(% yield produced	balance				
by the overall					
process based on					
reactant input to					
process)					

Notes: Per pass conversion is higher than total conversion for NaOH in reactor 1, because some NaOH enters the process elsewhere, and is not used in this reactor.

Product purity		
	Pd on C 10%	Comments
Used here	99.9	10 kg Pd, 899 kg C, 1 kg water

Summary of LCI Information

		Inputs			
Input UID	Input Name	Input Flow	Input purity	Units	Comments
7647-10-1	palladium chloride	168		[kg/hr]	
UIDActivatedCarbon	activated carbon	900		[kg/hr]	
50-00-0	Formaldehyde	284		[kg/hr]	
1310-73-2	Sodium hydroxide	224		[kg/hr]	
7722-84-1	Hydrogen peroxide	33.9		[kg/hr]	
7647-14-5	Sodium chloride	117		[kg/hr]	
	Total	1726		[kg/hr]	
	١	Non-reacting inpu	ıts		
UID	Name	Flow	Purity	Units	Comments
7732-18-5	Water	6.75e+4		[kg/hr]	
	Total	6.75e+4		[kg/hr]	
		Ancillary inputs	1		
UID	Name	Flow	Purity	Units	Comments
No ancillary inputs					
		Products			
Product UID	Product Name	ProductFlow	Purity	Units	Comments
UIDPdOnC10	palladium on carbon (10%)	1000	99.9	[kg/hr]	100 kg Pd on 899kg carbon
	Total	1000		[kg/hr]	
		Benign Outflows	5		
UID	Name	Flow	Purity	Units	Comments
7732-18-5	Water	6.75e+4		[kg/hr]	
	Total	6.75e+4		[kg/hr]	

	C	hemi	ical En	nissio	ns		
Emission UID	Emission Name	Gas Flow	Liquid Flow	Solid Flow	Solvent Flow	Units	Comments
124-38-9	Carbon dioxide	39.5	1.98	0	0	[kg/hr]	
1310-73-2	Sodium hydroxide	0	148	0	0	[kg/hr]	
50-00-0	Formaldehyde	1.41	254	0	0	[kg/hr]	
7647-10-1	palladium chloride	0	1.68	0	0	[kg/hr]	
7647-14-5	Sodium chloride	0	227	0	0	[kg/hr]	
UIDActivatedCarbon	activated carbon	0	1.000	0	0	[kg/hr]	
Totals		41.0	634	0	0	[kg/hr]	
		Ма	ss Bal	ance			
Total inputs		6.92e+	4				
Total outflows		6.92e+	4				
Net input		1.94					
		E	nergy	use			
Energy type		Amoui	nt			Comments	
electricity					31.4	[MJ/hr]	
heating steam					1.45e+4	[MJ/hr]	
Net input requirement	:				1.45e+4	[MJ/hr]	Net of energies input to system
cooling water					-1.25e+4	[MJ/hr]	
potential recovery					-3115	[MJ/hr]	
Net energy					1.14e+4	[MJ/hr]	Net input requirement - potential recovery

Process Diagram Interpretation Sheet

- 1) As much as possible, standard symbols are used for all unit processes.
- 2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet
- 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
- 4) The process numbering is as follows,
 - generally numbers progress from the start to the end of the process
 - numbers are used for process streams
 - C i, i = 1,...n are used for all cooling non-contact streams
 - S j, j = 1,...n are used for all steam heating non-contact streams
- 5) Recycle streams are shown with dotted lines

For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm

Process Diagram or Boundary of LCI

Steam enters the process as a gas at 207 °C and leaves as a liquid at 207 °C. Cooling water enters at 20 °C and leaves at 50 °C. Unless otherwise indicated, all processes are at 1 atm and 25°C.

Mass Balance of Chemicals in Each Process Stream

All flow rates are given in kg / hr Physical state of chemical losses:

	Comments	Streams	Temp [C]	Д	Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde		Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
		0		1.00		0		(0	C		0	0	0	0	0	0	0	0
Input		1	25.0			168			168										
		2				168		(168	C		0	0	0	0		0		
Input		3				1.00E+04	9999									33.9			
		4	2			1.00E+04	9999	(0	C)	0	0	0	0	33.9	0		
Input		5				117											117		
		6				117											117		
		7	25.0			1.03E+04	9999	(168	C		0	0	0		33.9	117		
Input	0.0000 % NaOH	8	25.0	1.00	I	2211	2100								111				
	INACII	Stream 17:R	ecycle	L e innut	<u> </u>	3790	3600								190				
		Stream 17:R calculated				3790		(0	C		0	0	0			0		
		Stream 17:R	ecvcle	e residu	ıe	-0.105	0	(0	C		0	0	0	-0.105	0	0		
			66.1			6001	5700	(0	C		0	0	0		0			
			66.1			6001	5700			C)	0	0	0		0			
Input			25.0			900				900									
•			25.0			900				900									
		13	64.8	1.00	I	6901	5700	(0	900		0	0	0	301	0	0		
			90.0		I	6901	5700	(0	900		0	0	0	301	0	0		
			90.0		I	6901	5700	(0	900		0	0	0	301	0	0		
		16	90.0	1.00	I	5053	4800								253				
			90.0		I	3790									190				
		18	90.0		l	1263	1200	(0	C		0	0	0		0	0		
Waste		19			1	-1263	-1200	(0	C		0	0	0		0	0	0	0
			90.0			1848		(0	900		0	0	0	47.5	0	0		
Input	,		25.0			3000													
		22			I	3000													
Waste		23	42.4	1.00		-3037	-3000	(0	C		0	0	0	-36.6	0	0	0	0

	Comments	Streams	Temp [C]		Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde	Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
				1.00 l		1811	900	0	0	900	0	0	0	11.0	0	0		
		25	120	1.00 g		900	900											
Waste	T	26		1.00 l		-900	-900	0	0	0	0	0	0	0	0			0
		27	120	1.00 s		911	0	0	0	900	0	0	0	11.0	0	0		
Input		28	25.0	1.00 l			2.91E+04											
		29	25.0	1.00 l	2	2.91E+04	2.91E+04							0				
	0.0000	30	25.6	1.00 l	3	3.00E+04	2.91E+04	0	0	900	0	0	0	11.0	0	0		
	carbon		05.0	4.00		222	400							440				
Input		30a	25.0	1.00	_	282	169							113				
D4	407	300	25.0			282	169	/ 00 0 0/		. :				113				
R1	167	кд	palla chlor				ed in rxn 1	(99.0 %	of reactor	'input)								
		kg				is lost in r												
		kg				is lost in r												
		Input to react				4.06E+04	3.93E+04	0		900		0	0					
		R1 Reaction 1							-1.00		1.00			-2.00				
		R1 Conversion		kg/hr] :		-0.0137			-167		164			-75.2				
		R1 Conversion	on 1	:		0.940			-0.940		0.940			-1.88	-0.940	1.88		
		[kgmol/hr]																
		R1 Reaction	Coeff	icient :														
		2	0 [. /11														
		R1 Conversion		kg/nrj :		Nan												
		R1 Conversion [kgmol/hr]	on ∠	-	١	Non- Number in input												
		R1 Reaction	Coeff	icient :														
		R1 Conversion	on 3 [l	ka/hrl :	\neg													
		R1 Conversion 3 [kg/hr] : R1 Conversion 3 : [kgmol/hr]																
		Flow out of re	actor			4 06F+04	3.93E+04	0	1.68	900	164	0	0	48.6	1.94	227		
		Primary prod			_	Palladium			1.50		.51		J	.5.0				
		Total convers			7			NA	99.0	-0	NA	-0	NA	33.6	94.3	-94.3		
		Per pass con		on :	1		-0		99.0		NA			60.8				
		Total yield fro						NA	99.0		NA			60.8				
		31	70.0	1.00 l	4	4.06E+04	3.93E+04	0	1.68	900	164	0	0	48.6	1.94	227		

	Comments	Streams	Temp [C]	а	Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde	Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
		32				4.06E+04		0			164	0	0		1.94	227		
		33				3.94E+04	3.91E+04		1.68					48.4	1.93	226		
Waste		33a	25.0	1.00		- 3.94E+04	- 3.91E+04	0		-1.00	0	0	0	-48.4	-1.93	-226	0	0
		34	70.0	1.00		1228	164	0	7.03E- 03	899	164	0	0	0.203	8.09E- 03	0.946		
Input		35	25.0	1.00		3343												
			25.0			3343												
Waste			29.3			-3344	-3343	0	0	0	0	0	0	-0.193	-7.71E- 03	-0.901	0	0
			29.3			1227	164			899	164			9.47E- 03	3.78E- 04	0.0442		
Input		39	25.0	1.00		3343	3343											
			25.0			3343												
Waste		41	25.4			-3343		0	0	0	0	0	0	-9.03E- 03	-3.60E- 04	-0.0421	0	0
		42	25.4	1.00	I	1227	164			899	164			4.43E- 04	1.77E- 05	2.07E- 03		
Input		43	25.0	1.00		3343	3343											
			25.0			3343												
Waste		45	25.0	1.00		-3343	-3343	0	0	0	0	0	0	-4.22E- 04	-1.68E- 05	-1.97E- 03	0	0
		46	25.0	1.00		1227	164			899	164			2.07E- 05	8.25E- 07	9.65E- 05		
Input		47	25.0	1.00	l	1378	1096					282						
			25.0			1378						282						
			25.0			2605			_		164	282	0	2.07E- 05	8.25E- 07	9.65E- 05		
R2	164		Pd(C	H)4 on			ed in rxn 1	(100 % (of reactor	input)								
		kg				is lost in r												
		kg				is lost in r												
		Input to react	tor		:	2605	1260			899	164			05		9.65E- 05		
		R2 Reaction 1	Coeff	ficient	:		3.00	1.00			-1.00	-1.00						
		R2 Conversion	on 1 [kg/hr]	:	-0.0282	50.7	100.0			-164	-28.2	41.3					
		R2 Conversion [kgmol/hr]	on 1		:	2.82	2.82	0.940			-0.940	-0.940	0.940					

	Comments	Streams	Temp [C]	a	Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde	Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
		R2 Reaction 2	Coeff	ficient	:													
		R2 Conversion	n 2 [ka/hrl														
		R2 Conversion [kgmol/hr]	on 2		:	Non- Number in input												
		R2 Reaction 3	Coeff	ficient	:													
		R2 Conversion	on 3 [kg/hr]	:													
		R2 Conversion [kgmol/hr]	on 3		:													
		Flow out of re	eacto	r		2605	1311	100.0	0	899	0	254	41.3	2.07E- 05	8.25E- 07	9.65E- 05		
		Primary prod	uct		:	Palladium												
		Total convers			:		-0.0752		-0		NA	10.0		-0				
		Per pass con			:		NA	NA		-0				-0	-0	-0		
		Total yield fro			:		NA	NA			100	100						
		49a				78.7	39.3						39.3					
Waste			25.0			78.7	39.3		0	0	0	0	39.3	0	0	0	0	0
Waste	_	49c 49d	25.0 25.0	1.00		-39.3 -39.3	-39.3	0	0	0	0		-39.3	0	0	0	0	0
vvasie		50				2526		100.0	0	899	Ü	Ū	2.00	05	8.25E- 07	9.65E- 05	U	O
		51	100	1.00	I	2526	1271	100.0	0	899	0	254	2.00	2.07E- 05	8.25E- 07	9.65E- 05		
		52	100	1.00	I	527	439					87.6	0.690	05	8.25E- 07	9.65E- 05		
Waste			25.0			-527	-439		0	0	0		-0.690	-2.07E- 05	-8.25E- 07	-9.65E- 05		0
		54				1999			0	899	0	166	1.31	0	0	0		
Input			25.0			6000												
			25.0			6000												
Waste			36.3			-6147	-6000		,	U	0		-1.15	0		Ū	ŭ	0
lan t			36.3			1852			0	899	0	20.3	0.160	0	0	0		
Input			25.0			6000												
Waste			25.0 26.6			6000 -6018			-0	-0	0	-17.8	-0.140	0	0		0	. 0
waste			26.6			1834	-6000		0	899	Ŭ				·	ŭ	·	0
		62	∠0.0	1.00	S	1834	833	100.0	0	₁ 899	0	2.47	0.0195	U	0	0		

	Comments	Streams	Temp [C]	Ь	Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde	Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
		63				834						2.47						
Waste		64				-834	-832		_		0		0	0	Ţ	ŭ	0	0
		65				1000					0							_
Main pro	oduct		25.0	1.00	S	-1000		-100.0	0	-899	0	0	-0.0195	0	0	0	0	0
		Product purit				99.9												
		Main product				Palladium												
		Overall Rxn					3.00		-1.00			-1.00		-2.00				
		Total yield of					NA	NA	99.0			10.0		33.6				-
Waste		Fugitive Loss	ses (T	otal)	g	-1.61	0		ŭ	0	0		-0.197	0	_	, ,	0	0
		Input Sum				6.92E+04	6.75E+04	0			0		0					
		Fugitive Rep	lacem	ent of		1.41			0			1.41		0	0			
		Reactants				C 00F : 04	C 755 . 0.4		400	000		204	0	20.4	22.0	447		
		Total Input (I Replacemen	t)	F Fugiti	ve				168		0							
		Product Sum				1000			0		0	Ū						
		Main product				1000		100.0	0	899	0	0	0.0195	0	0	0		
		Net Input (in fugitives)			g	0.154												
Input		C1	20.0			0												
Input		C1	20.0			2252												2252
Cooling out		C2	50.0	1.00		2252	<u>0</u>	0	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	2252
Input		C3	20.0	1.00	I	1.57E+04												1.57E+04
Cooling out		C4	50.0	1.00		1.57E+04	0	0	0	0	0	0	0	0	<u>0</u>	0	<u>0</u>	1.57E+04
Input		C5	20.0	1.00	ı	5.00E+04												5.00E+04
Cooling out		C6	50.0			5.00E+04	0	0	0	0	0	0	0	0	0	0		5.00E+04
Input		C7	20.0	1.00	ı	692												692
Cooling out		C8	50.0			692		0	0	0	0	0	0	0	0	0	0	
Input		C9	20.0	1.00		752												752
Cooling out		C10	50.0		_	752		0	0	0	0	0	0	0	0	0	0	
Input		C11	20.0	1.00		990												990
Cooling out		C12	50.0			990		0	0	0	0	0	0	0	0	0	0	
Input		C13	20.0	1.00		1.43E+04												1.43E+04

	Comments	Streams	Temp [C]	۵	Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde	Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
Cooling out		C14	50.0	1.00		1.43E+04	0	0	0	0	0	C	0	0	0	0	0	1.43E+04
Input		C15	20.0	1.00	ı	395												395
Cooling out		C16	50.0	1.00	_	395	0	0	0	0	0	C	0	0	0	0	0	395
Input		S1	207	1.00		388											388	
Steam out		S2	207	1.00	_	388	0	0	0	0	0	C	0	0	0	0	388	0
Input		S3	207	1.00		1413											1413	
Steam out		S4	207	1.00	1	1413	0	0	0	0	0	C	0	0	0	0		0
Input		S5	207	1.00	I	4553											4553	
Steam out		S6	207	1.00	l	4553	0	0	0	0	0	C	0	0	0	0	4553	0
Input		C1	20.0	1.00	I	2252												2252
Cooling out		C2	50.0	1.00	1	-2252	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>C</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	-2252
Input		C3	20.0	1.00	I	1.57E+04												1.57E+04
Cooling out		C4	50.0	1.00	ļ	- 1.57E+04	<u>0</u>	<u>0</u>	0	<u>0</u>	<u>0</u>	<u>C</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	- 1.57E+04
Input		C5	20.0	1.00		5.00E+04												5.00E+04
Cooling out		C6	50.0	1.00		5.00E+04	0	0	0	0	0	C	0	0	0	0	0	- 5.00E+04
Input		C9	20.0	1.00	_	752	-											752
Cooling out		C10	50.0	1.00		-752	0	0	0	0	0		0	0	0	0	0	-752
Input		C11 C12	20.0 50.0	1.00		990 -990	0	0	0	0	0		0	0	0	0	0	990 -990
Cooling out							0	U	U	U	U		U	U	U	U	U	
Input		C13	20.0			1.43E+04	0	0	0				0			0		1.43E+04
Cooling out		C14	50.0			1.43E+04	0	0	0	U	U	C	0	0	0	0		1.43E+04
Input		C15	20.0			395												395
Cooling out		C16	50.0	1.00		-395	0	0	0	0	0		0	0	0	0	0	-395
Input		S1	207			388											388	
Steam out		S2	207	1.00		-388	0	0	0	0	0		0	0	0	0	-388	0
Input 17		S3	207	1.00		1413					25/22		<u> </u>			<u> </u>	1413	

	Comments	Streams	Temp [C]	Ь	Phase	Total Flow	Water	Palladium	palladium chloride	activated carbon	Pd(OH)4 on C	Formaldehyde	Carbon dioxide	Sodium hydroxide	Hydrogen peroxide	Sodium chloride	Steam	Water
Steam		S4	207	1.00	1	-1413	0	0	0	C	(0	0	0	0	0	-1413	0
out																		
Input		S5	207	1.00	I	4315											4315	
Steam of	out	S6	207	1.00		-4315	0	0	0	C		0	0	0	0	0	-4315	0
Input		S7	207	1.00		126	•										126	
Steam of	out	S8	207	1.00		-126	0	0	0	C		0	0	0	0	0	-126	0
Input		S9	207	1.00	I	1331											1331	
Steam		S10	207	1.00	I	-1331	0	0	0	C	(0	0	0	0	0	-1331	0
out																		

Graph of Cumulative Chemical Losses through Manufacturing Process

Cumulative Chemical Loss

1 100033 Ott Can

Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process

Cumulative Contaminated Water Use

Process Stream

Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process

Cumulative Non-Contamintated Water Use

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling

Energy	Input [MJ / bate	ch]				Cooling Requirements [MJ / batch]										
Process Diagram Label	Unit	Energy input [MJ / 1000 kg Product]	Cumulative energy [MJ / 1000 kg Product]	To [C] (Used to determine	Energy Type	Process diagram label	Unit	Energy Loss	Cumulative cooling water energy	Tef [C] (for recovery efficiency)	Recovery Efficiency	Energy Recovered	Cumulative recovered [MJ / 1000 kg Product]			
Cnv1	Conveyer 1	7.07E-04	7.07E-04		Е	Hx2	Heat exchanger 2	-333	-333	90.0	0.250	-83.2	-83.2			
P1	Pump 1	0.179	0.179		ш	Hx3	Heat exchanger 3	-2319	-2651	120	0.250	-580	-663			
Cnv2	Conveyer 2	4.90E-04	0.180		Е	Hx4	Heat exchanger 4	-7383	-1.00E+04	70.0	0.250	-1846	-2509			
MxEI1	Mixing electricity 1	4.81	4.99	0		Hx5	Heat exchanger 5	-111	-1.01E+04	100		-27.7	-2536			
P2	Pump 2	0.0428	5.03		Ε	Hx6	Heat exchanger 6	-146	-1.03E+04	100	0.250	-36.5	-2573			
Cnv3	Conveyer 3	3.78E-03	5.04		Е	Hx7	Heat exchanger 7	-2111	-1.24E+04	100	0.250	-528	-3101			
Hx1	Heat exchanger 1	631	636	90.0		Hx8	Heat exchanger 8	-58.3	-1.25E+04	100	0.250	-14.6	-3115			
MxEI2	Mixing electricity 2	2.91	639	0												
P3	Pump 3	0.462	639		Ε											
P4	Pump 4	0.0735	639		Ε											
Dry1	Dryer 1	2297	2936	120												
P6	Pump 6	0.501	2937		Е											
P7	Pump 7	1.00E-05	2937		Е											
R1	Reactor 1	7013	9.95E+03	70.0	S											
MxEI2	Mixing electricity 2	18.6	9.97E+03		Е											
P8	Pump 8	3.62	9.97E+03		Е											
P9	Pump 9	8.47E-03	9.97E+03		Ε											
P10	Pump 10	8.47E-03	9.97E+03		Ε											
P11	Pump 11	8.47E-03	9.97E+03		Ε											
P11a	Pump 11a	7.40E-04	9.97E+03		Е											
R2	Reactor 2	205	1.02E+04	100	S											
P12	Pump 12	0.150	1.02E+04		ш											
P13	Pump 13	0.0427	1.02E+04		Ε											
P14	Pump 14	0.0427	1.02E+04		Е											
Dry2	Dryer 2	2164	1.23E+04	100	S											
	Potential recovery	-3115	9225													
	Net energy		9225				Potential recovery:						-3115			

Electricity	31.4	E [MJ/hr]	
DowTherm	0	D [MJ/hr]	
Heating steam	1.23E+04	S [MJ/hr]	
Direct fuel use	0		
Heating natural gas	0	G [MJ/hr]	
Energy input requirement	1.23E+04	[MJ/hr]	
Cooling water	-1.25E+04	[MJ/hr]	
Cooling refrigeration		[MJ/hr]	
Potential heat recovery	-3115		
Net energy	9225	[MJ/hr]	

Graph of Cumulative Energy Requirements

Cumulative Energy Input

